- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Multi-view multi-sparsity kernel reconstruction for multi-class image classification.pdf
Neurocomputing 169 (2015) 43–49
Contents lists available at ScienceDirect
Neurocomputing
journal homepage: /locate/neucom
Multi-view multi-sparsity kernel reconstruction for multi-class image classi?cation
Xiaofeng Zhu a,b, Qing Xie c, Yonghua Zhu d, Xingyi Liu e, Shichao Zhang b,n
a School of Mathematics and Statistics, Xian Jiaotong University, PR China b Guangxi Key Lab of Multi-source Information Mining Security, Guangxi Normal University, PR China c Division of CEMSE, KAUST, Saudi Arabia d School of Computer, Electronics and Information, Guangxi University, China e Qinzhou Institute of Socialism, Qinzhou, Guangxi, China
article info
Article history: Received 29 April 2014 Received in revised form 19 August 2014 Accepted 25 August 2014 Available online 28 May 2015
Keywords: Image classi?cation Multi-view classi?cation Sparse coding Structure sparsity Reproducing kernel Hilbert space
abstract
This paper addresses the problem of multi-class image classi?cation by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple visual features, the MMKR ?rst maps them into a highdimensional space, e.g., a reproducing kernel Hilbert space (RKHS), where test images are then linearly reconstructed by some representative training images, rather than all of them. Furthermore a classi?cation rule is proposed to classify test images. Experimental results on real datasets show the effectiveness of the proposed MMKR while comparing to state-of-the-art algorithms.
2015 Elsevier B.V. All rights reserved.
1. Introduction
In image classi?cation, an image is often represented by its visual feature, such as HSV (Hue, Saturation, Value) color histogram, LBP (Local Binary Pattern), SIFT (Scale invariant feature transform), CENTRIST (CENsus TRansform hISTgram), and so on. Usually, different representations describe different characteristics of images. For example, CENTRIST
您可能关注的文档
- Jointly sparse neighborhood graph for multi-view manifold clustering.pdf
- JTY-GD-2000型智能光电感烟探测器.doc
- Jupiter's H+3 Emissions Viewed in Corrected Jovimagnetic Coordinates.pdf
- Kernel-aligned multi-view canonical correlation analysis for image recognition.pdf
- Kinetic study of catalytic cracking on the effect of reaction parameters in short-contact cyclone reactors.pdf
- Knee contact forces are not altered in early knee osteoarthritis.pdf
- L-新浪上海.doc
- L3从西方化和现代化到全球化.ppt
- Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay.pdf
- Language viewed from the brain I. Honjo, Basel Karger, 1999, X+158 pp. ISBN 3-8055-6789-8, $155.00.pdf
- Multi-view non-negative matrix factorization by patch alignment framework with view consistency.pdf
- Multi-view representation learning for multi-view action recognition.pdf
- Multi-view semi-supervised learning for image classification.pdf
- Multi-view Sparsity Preserving Projection for dimension reduction.pdf
- Multi-wire metallization for solar cells Contact resistivity of the interface between the wires and In2O3Sn, In2O3F, and ZnOAl layers.pdf
- Multicut in trees viewed through the eyes of vertex cover.pdf
- Multilayer diffusion in a composite medium with imperfect contact.pdf
- Multimarket contact and performance Evidence from emerging economies.pdf
- Multimodal learning for view-based 3D object classification.pdf
- Multiple views system to support awareness for cooperative design.pdf
最近下载
- U8V11.1培训课件9U8V11.1新版功能介绍生产制造幻灯片.ppt VIP
- GB_T 9711-2023 石油天然气工业 管线输送系统用钢管.pdf VIP
- 1kv母线调试报告.pdf VIP
- 过滤实验-课件.ppt VIP
- GB_T 14264-2024 半导体材料术语.pdf VIP
- 消防系统的联动常见故障.ppt VIP
- (完整版)供应商合规管理制度 .pdf VIP
- JBT 12786-2016 升降工作平台 术语与分类.pdf VIP
- 2024东南亚电商市场报告.pptx VIP
- 第七单元 跨学科主题学习——项目开展,探究丝绸之路 学习任务单 苏科版初中信息科技七年级下册.docx VIP
文档评论(0)