A walk over the shortest path Dijkstras Algorithm viewed as fixed-point computation.pdfVIP

A walk over the shortest path Dijkstras Algorithm viewed as fixed-point computation.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A walk over the shortest path Dijkstras Algorithm viewed as fixed-point computation.pdf

Information Processing Letters 77 (2001) 197–200 A walk over the shortest path: Dijkstra’s Algorithm viewed as ?xed-point computation Jayadev Misra ? Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188, USA Abstract We present a derivation of Dijkstra’s shortest path algorithm [Numer. Math. 1 (1959) 83]. We view the problem as computation of a “greatest solution” of a set of equations. A UNITY-style computation [Chandy and Misra, Parallel Program Design: A Foundation, 1988] is then prescribed whose implementation results in Dijkstra’s algorithm. ? 2001 Elsevier Science B.V. All rights reserved. Keywords: Design of algorithms; Graph algorithms; Combinatorial problems; Program derivation 0. Introduction 1. The shortest path problem Dijkstra’s shortest path algorithm [1] has, by now, become a classic (the cited paper has received such an of?cial designation from the Citation Index Service). Typical descriptions (and derivations) of this algorithm start by postulating that the shortest paths be enumerated in the order of increasing distances from the source. In this note, we present a derivation that is quite different in character. We view the problem as computation of a “greatest solution” of a set of equations. A UNITY-style computation [0] is then prescribed whose implementation results in Dijkstra’s algorithm. The bulk of the work in our derivation is in designing the appropriate heuristics that guarantee termination; this is in contrast to traditional derivations where most of the effort is directed toward postulating and maintaining the appropriate invariant. Given is a ?nite directed graph that has (i) a source node, henceforth designated by s, and (ii) for each edge (i, j ) a non-negative real number wij , called its length. The length of a path is the sum of edge lengths along the path. It is required to compute the shortest path, i.e., a path of minimum length, from s to every node. Henceforth, “shortest path to a node” means

您可能关注的文档

文档评论(0)

2752433145 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档