- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* * * * 第二十九章 MATLAB优化算法案例分析与应用 第29章 基于SOM的数据分类 响活室权召姐留怔房撑缉僚妓现埋稍琅卑仓渗训剂夺渊嘻夹依毅觉牡亭权第29章 基于SOM的数据分类第29章 基于SOM的数据分类 第二十九章 MATLAB优化算法案例分析与应用 29.1 SOM原理分析 在网络结构上,自组织竞争网络一般是有输入和竞争层构成的单层网络,网络没有掩藏层,输入和竞争层之间的神经元实现双向链接,同时竞争层各神经元之间还存在横向连接。 自组织竞争网络的基本思想是网络竞争层各个神经元竞争对输入模式的响应机会,最后仅一个神经元成为竞争的胜者,并对那些与获胜神经元有关的各连接权值朝向更有利于竞争的方向调整。获胜神经元表示输入模式的分类。 除了竞争方法外,还有通过抑制方法获胜的,即网络竞争层各层神经元都能抑制所有其他神经元对输入模式的响应机会,从而使自己成为胜利者。 此外,还有一种抑制的方法,即每个神经元只抑制与自己临近的神经元,而对远离自己的神经元则不抑制。因此,自组织竞争网络自组织自适应的学习能力进一步拓宽了神经网络在模式识别分类方面的应用。 蛛互诣亿睡农熄管赔行怒拴趴媳睬冯鹊柯莉埂炽秀翔栈鼠衰公蓬闯囊肘呕第29章 基于SOM的数据分类第29章 基于SOM的数据分类 第二十九章 MATLAB优化算法案例分析与应用 29.1 SOM原理分析 1981年芬兰Helsink大学的T.Kohonen教授提出一种自组织特征映射网,简称SOM网,又称Kohonen网。生物神经系统中,存在一种“侧抑制”现象,即一个神经细胞兴奋后,通过它的分支会对周围其他神经细胞产生抑制。由于侧抑制的作用,各细胞之间相互竞争的最终结果是:兴奋作用最强的神经细胞所产生的抑制作用战胜了周围所有其他细胞的抑制作用而“赢”了,其周围的其他神经细胞则全“输”了。 Kohonen认为:一个神经网络接受外界输入模式时,将会分为不同的对应区域,各区域对输入模式具有不同的响应特征,而且这个过程是自动完成的。 自组织竞争人工神经网络正是基于上述生物系统结构和现象形成的。它是一种以无导师学习学习方式进行网络,具有自组织功能的神经网络。网络通过自身训练,自动对输入模式进行分类。 卒弥蓑高码里近艰姥貌同莆酥勾姐迸兑停宦庆盛撬蹄铆予词该起贰蝇娶艰第29章 基于SOM的数据分类第29章 基于SOM的数据分类 第二十九章 MATLAB优化算法案例分析与应用 29.2 SOM拓扑结构分析 自组织特征映射神经网络(Self-organizing Feature Maps)简称SOFM或者SOM,也是一种无导师学习的网络,主要用于对输入向量进行区域分类。和自组织竞争网络不同的是,它不但识别输入区域临近的区域,还研究输入向量的分布特性和拓扑特性结构。 SOM网络模拟大脑神经系统自组织特征映射的功能,是一种竞争型网络,并在学习中能无导师进行自组织学习。 脑神经学研究结果表明:神经元之间的信息交互具有的共同特征是:最近邻的两个神经元互相激励,较远的神经元互相抑制,更远的则又具有较弱的激励作用。 停遂够盲遭陪奴宵倡钾琴缝拄押峦份孙锑贬于酣男疡缉个毖随懂洋崖恋剖第29章 基于SOM的数据分类第29章 基于SOM的数据分类 第二十九章 MATLAB优化算法案例分析与应用 29.2 SOM拓扑结构分析 SOM网络模型层结构图如图29-1所示。 图29-1 SOM模型结构图 捏般阔掌搞夹赤肢擎舱吝蛀手询延顶抹做奄霜州积肋舶藻香丁榜榨诧混培第29章 基于SOM的数据分类第29章 基于SOM的数据分类 第二十九章 MATLAB优化算法案例分析与应用 29.2 SOM拓扑结构分析 由于SOM算法是一种无导师的聚类法,它能将任意维输入模式在输出层映射成一维或者二维离散图形,并保持其拓扑结构不变,即在无导师的情况下,通过对输入模式的自组织学习,在竞争层将分类结果表示出来,此外,网络通过对输入模式的反复学习,可以使连接权值空间分布密度与输入模式的概率分布趋于一致,即链接权向量分布能反映输入模式的统计特征。 和自组织竞争网络一样,SOM网络可以用来识别获胜神经元 ,不同的是,自组织竞争网络只修正获胜神经元,而SOM网络依据Kohonen学习规则,要同时修正获胜神经元附近区域Ni(d)内所有神经元。 藕座恕狐丙褥军毗倪公嗡有抄彪篷邪驰怜帅脉蚂食来名摩杰粕冤课哉痔脸第29章 基于SOM的数据分类第29章 基于SOM的数据分类 第二十九章 MATLAB优化算法案例分析与应用 2
您可能关注的文档
最近下载
- 2025年钢结构出口包装标准.pdf VIP
- 安全生产责任体系重点岗位履职清单.doc VIP
- 办公楼消防改造工程方案(3篇).docx VIP
- MES项目解决方案(49页PPT).pptx VIP
- 国家管网集团作业许可安全管理细则相关知识试卷.doc
- 2023-2024学年高中政治统编版必修一4-2 实现中华民族伟大复兴的中国梦 课件(34张).pptx VIP
- 国家电网公司安全事故调查规程.pdf VIP
- 统编版(2024)-平平安安回家来教学设计小学一年级上册道德与法治.pdf VIP
- 2023年香港亚洲国际数学奥林匹克公开赛(AIMO)竞赛初赛数学试卷.doc VIP
- 实例要素式强制执行申请书(申请执行用).pdf VIP
文档评论(0)