- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据挖掘技术在税务系统中的深度应用
数据挖掘技术在税务系统中的深度应用
随着计算机技术的发展和数据挖掘应用的逐渐成熟,数据挖掘技术引起了越来越多的行业的重视。在国外,政府应用数据挖掘技术发现欺诈行为已经有了30多年的历史,如今,中国的各类政府机关在信息化的进程中也都不约而同的将数据挖掘应用提到了议事日程上来。税务征管需要以更新、更便捷、更有效的方法,对大量的征管数据进行分析、提取、挖掘其隐藏信息数据中的潜能。本文着重介绍了通过数据挖掘技术如何实现纳税评估选案,从而降低征管成本,提高管理效果。
一、税务征管发展基本状况
我国和许多起他国家一样每年都会因为纳税人的偷漏税问题而损失大量的财政收入,有关税务部门一直以来都致力于解决这方面的问题。但是在没有引进计算机工具和数据挖掘工具技术之前,这方面的工作在很大程度上,是依赖专业的人员根据以往的工作经验和某些直觉上的判断来圈定那些不法纳税人的特征,虽然这在初期可能会有很大的帮助,但是随着税务体制的改革,经济的发展,自然而然的引起的税源的增加,税种的增加,这时,政府的税务管理部门在使用以往总结的凭经验和直觉判断的方法,去区分判断那些违法的纳税人,势必会导致产生以下问题:征管人员的增加,引起征管成本增大;选案的不科学性,引起征管效率低下;同时,对于个案检查过程中,由于没有证据来源,所以增加了个案的时间成本,而且往往是效果也不是十分明显。 以上种种问题表明,仅仅依赖定性的研究来辅助政府税务管理部门如何加大监管的工作力度已经出现了很多弊端,借鉴国外的成功经验,使用数据挖掘,对税务管理部门所辖的纳税户进行纳税评估选案的工作,将会大大提高监管工作的效率和工作的效果。当各个税收征管部门把税务信息化作为急待解决的问题时,而数据挖掘是实现信息化的必由之路。金税三期展开前后,税务部门都比较关注税务数据的深度利用和数据挖掘问题。
二、对数据挖掘深度利用的理解
数据挖掘(Data Mining)是一种知识发现的过程,它主要基于统计学、人工智能、机器学习等技术,高度自动化地分析数据,做出归纳性的推理,从中挖掘出潜在的模式,并对未来情况进行分析、预测,以辅助管理者、决策者评估风险、做出正确的决策。同时,数据挖掘也包含了一系列旨在从数据集中发现有用而尚未发现的模式(Pattern)的技术。确切地说,从大量的数据中抽取出潜在的、不为人知的有用信息、模式和趋势,是一种更深层次的数据分析。
数据是形成知识的源泉,原始数据可以是结构化的,如关系数据库中的数据;也可以是半结构化的,如文本、图形和图像数据;甚至是分布在网络上的异构型数据。方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现的知识可以被用于信息管理,查询优化,决策支持和过程控制,还可以用于数据自身的应用维护。因此,数据挖掘技术是一门交叉学科,它把人们对数据的应用从低层次的简单查询,提升到从数据中挖掘知识、提供管理和决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、数理统计、可视化技术和并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。
在实际应用中,数据挖掘主要采用关联规则与时间序列、分类与聚类、Web页挖掘等几种分析中进行发现:
(一)关联规则与时间序列分析
关联规则挖掘就是发现大量数据中项集之间有趣的关联或相关联系。根据所处理值的类型分为布尔关联规则与量化关联规则;根据涉及的属性维数分为单维关联规则或多维关联规则。这方面比较有影响的算法有Apriori算法等。时间序列分析与关联规则分析类似,目的也是为了挖掘出数据之间的联系,但时间序列分析更加侧重于数据在时间先后上的因果关系。
(二)分类与聚类分析
分类在数据挖掘中是一项非常重要的任务。分类的目的是通过统计方法、机器学习方法(包括决策树法和规则归纳法)、神经网络方法等构造一个分类模型,然后把数据库中的数据映射到给定类别中的某一个中去。分类分析首先为每一个观测赋予一个标记,然后检查这些被标记的观测,描述出这些观测的特征。这种描述可以是一个数学公式或者模型,利用它可以分类新的观测。常用的几种典型的分类模型有线性回归模型、决策树模型、基于规则模型和神经网络模型等。聚类分析是把一组未标定的记录或个体按照相似性归成若干类型,即物以类聚.它的目的是根据一定的规则,使同一类别之内的相似性尽可能大,而类别之间的相似性尽可能小,合理地划分记录集合。知识外化过程的下一层次包含了更为强大的有哪些信誉好的足球投注网站工具和文件管理系统,它们对贮存的知识进行分类,并能识别出各信息源之间的相似之处。基于此,可用聚类的方法找出知识库中各知识结构间隐含的关系或联系。
(三)Web 页挖掘分析
随着Internet的迅速发展,使得网络上的
您可能关注的文档
- 操作系统实验报告进程的管道及消息通信.doc
- 支持ASILD应用的安全集成硬件解决方案.docx
- 撰写论文必备Word撰写论文的方法和技巧.doc
- 改善幼儿园户外游戏活动的实践与探索.doc
- 摩托罗拉APicsel浏览器用户手册.doc
- 改进公司预算编制“利润观”预算的兴起.doc
- 收集的一些PPT制作技巧powerpint技巧.doc
- 支招如何培养优秀的奶粉促销员.docx
- 摄影爱好者必读简单几招拍出雪地好风光.docx
- 改革开放以来无锡工业经济发展历程总结.doc
- 北师大版小学数学三年级上册《寄书》教学设计.docx
- 统编版(部编版)语文二年级上册《雪孩子》教学设计.docx
- 统编版(部编版)语文二年级上册《八角楼上》教学设计.docx
- 北师大版小学数学三年级上册《长方形周长》教学设计.docx
- 北师大版小学数学三年级上册《丰收了》教学设计.docx
- 统编版(部编版)语文二年级上册《夜宿山寺》教学设计.docx
- 统编版(部编版)语文二年级上册《风娃娃》教学设计.docx
- 统编版(部编版)语文二年级上册《朱德的扁担》教学设计.docx
- 统编版(部编版)语文二年级上册《难忘的泼水节》教学设计.docx
- 统编版(部编版)语文二年级上册《纸船和风筝》教学设计.docx
最近下载
- 第45届世界技能大赛平面设计技术项目.pdf
- 初中英语学困生的形成原因及对策研究结题报告.doc
- 暑假10以内加减法口算题天天练-每页100题(打印版).docx
- 高血压的中医调理方法.pptx
- 高考作文模拟写作:大树 藤蔓 依靠(附写作指导及范文点评与延伸训练).docx VIP
- 朋友圈要不要屏蔽父母辩论赛 反方辩词一辩、二辩、三辩、四辩发言稿.docx
- 湖南省三湘名校教育联盟2023-2024学年高二上学期11月期中联考物理试题(原卷).docx VIP
- 三《采用合理的论证方法》课件 2021-2022学年高中语文统编版选择性必修上册第四单元.pptx
- 跨学科主题学习——解密汉诺塔游戏 教学课件 电子工业版 五年级下册.ppt
- Project1 An animal book 获奖课件PPT译林版(一)英语二上.pptx
文档评论(0)