SIFTPPT.pptVIP

  1. 1、本文档共57页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
SIFTPPT

SIFT (Scale Invariant Feature Transform) SIFT SIFT is an carefully designed procedure with empirically determined parameters for the invariant and distinctive features. SIFT stages: Scale-space extrema detection Keypoint localization Orientation assignment Keypoint descriptor 1. Detection of scale-space extrema For scale invariance, search for stable features across all possible scales using a continuous function of scale, scale space. SIFT uses DoG filter for scale space because it is efficient and as stable as scale-normalized Laplacian of Gaussian. DoG filtering Convolution with a variable-scale Gaussian Scale space Detection of scale-space extrema Keypoint localization Decide scale sampling frequency It is impossible to sample the whole space, tradeoff efficiency with completeness. Decide the best sampling frequency by experimenting on 32 real image subject to synthetic transformations. (rotation, scaling, affine stretch, brightness and contrast change, adding noise…) Decide scale sampling frequency Decide scale sampling frequency Pre-smoothing 2. Accurate keypoint localization Reject points with low contrast (flat) and poorly localized along an edge (edge) Fit a 3D quadratic function for sub-pixel maxima 2. Accurate keypoint localization Reject points with low contrast and poorly localized along an edge Fit a 3D quadratic function for sub-pixel maxima 2. Accurate keypoint localization Taylor series of several variables Two variables Accurate keypoint localization Taylor expansion in in matrix form, x is a vector, f maps x to a scalar 2D illustration 2D example Derivation of matrix form Derivation of matrix form Derivation of matrix form Accurate keypoint localization x is a 3-vector Change sample point if offset is larger than 0.5 Throw out low contrast (0.03) Accurate keypoint localization Throw out low contrast Eliminating edge responses Maxima in D Remove low contrast and edges Keypoint detector 3. Orientation assignment By assigning a consistent

文档评论(0)

shenland + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档