- 1、本文档共41页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
DiscreteTimeMarkovChain
Discrete time Markov Chain G.U. Hwang Next Generation Communication Networks Lab. Department of Mathematical Sciences KAIST Definition The sequence of R.V.s X0, X1, X2, ? with a countable state space S is said to be a discrete time Markov chain (DTMC) if it satisfies the Markov Property: for any ik 2 S, k=0,1,?,n-1 and i, j 2 S. Time homogeneous DTMC : P{Xn+1 = j | Xn = i} is independent of n. Transition Probability Matrices One step transition probability matrix P P = (pij) where pij = P{Xn+1 = j | Xn = i } The matrix P is nonnegative and stochastic, i.e., pij ? 0 and ?j2 S pij = 1 n step transition probability matrix P(n) = (p(n)ij) pij(n) = P{Xn = j | X0 = i} For a DTMC, the initial distribution and the matrix P uniquely determine the future behavior of the DTMC because Example: A general random walk Let Xi be i.i.d. R.V.s with P{X1 = j} = aj, j=0,1,?. Let S0 = 0, Sn = ?k=1n Xk. Then {Sn, n? 1} is a DTMC because Chapman - Kolmogorovs equation Chapman - Kolmogorovs theorem pij(n+m) = ?k2 S pik(n) pkj(m) proof: Using the chapman-Kolmogorov’s theorem we get i.e., the n-th power of the one step transition matrix P is, in fact, the n step transition matrix. Example Find the distribution of X4 where {Xn} (Xn2 S = {1,2}) forms a DTMC with initial distribution P{X0 = 1}=1 and one step transition probability P as follows: sol: Analysis of a DTMC When a communication system can be modeled by a DTMC with P and S = {0,1,2}, what happens? The stationary probabilities The state space S ={0,1, ?} The stationary probability vector (distribution) ? a row vector ? = (?0, ?1, ?) is called a stationary probability vector of a DTMC with transition matrix P if it satisfies Does the stationary distribution always exist? Does the stationary distribution always exist? The key question: When does the stationary vector exist? to answer the question, we need to classify DTMCs according to its probabilistic properties as irreducibility recurrence positive recurren
您可能关注的文档
- A地块不含住宅供电建议方案及配套费用估算方案.ppt
- a物质的量及其单位摩尔.ppt
- A远洋光华国际圣诞夜策划案P.ppt
- A岩溶地貌.ppt
- Barbie.ppt
- BarbieDoll芭比娃娃英文版.ppt
- a龙视讯视频监控系统介绍.ppt
- BCCG视点系列专题交流之一聊聊HOPSCA.ppt
- BAZAAR必须时尚天裁设计师特别节目策划.ppt
- BCG组织结构与关键绩效考核指标PART.ppt
- 2016-2017学年高中生物第二单元生态工程与生物安全第1章第2节我国的生态工程教案中图版选修3.doc
- 2022-2023学年小升初英语易错点专练06完形填空15篇(广州教科版专版含答案)2.docx
- 期中专项四年级英语下册(含答案)3.docx
- 期末卷(二)(含答案解析)-2022-2023学年高二历史期中期末复习备考必刷题(选择性必修一国家制度与社会治理).docx
- 第4课欧姆定律的应用第一讲欧姆定律实验探究(原卷版).docx
- Unit1限制性定语从句语法讲义人教版高一英语学生版213.docx
- 2023年宁波市初中毕业升学文化考试科学模拟卷(八).docx
- 5.3细胞呼吸的原理和应用课件高一上学期生物人教版必修12.pptx
- 高中政治更好发挥政府作用教学设计.docx
- 体悟民间故事中的幸福--五上《中国民间故事》导读课.docx
文档评论(0)