第二章流体的p-v-t关系和状态方程(6学时).docVIP

第二章流体的p-v-t关系和状态方程(6学时).doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第二章流体的p-v-t关系和状态方程(6学时)

第二章 流体的P-V-T关系和状态方程(6学时) 2.1 纯流体的P-V-T关系 2.2 气体的状态方程 2.3 对应态原理和普遍化关联式 2.4 真实气体混合物的P-V-T关系 2.5 液体的P-V-T关系 2.6 状态方程的比较、选用和应用 教学目的要求P、V、T 关系(包括状态方程法和对应状态法)及其应用、优缺点和应用范围。 定性认识流体P-V-T 行为; 掌握描述流体P-V-T 关系的模型化方法,了解几种常见的状态方程; 掌握对比态原理和普遍化状态方程 掌握计算真实气体混合物P-V-T 关系的方法,并会进行计算。 了解液体的P-V-T关系 教学内容在化工过程的分析、研究与设计中,流体的压力p、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U、熵S、Gibbs自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算。因此,流体的p –V –T 关系的研究是一项重要的基础工作。 p –V –T 关系,可以表示为三维曲面,如图2-1。 曲面上分单相区及两相共存区。曲线AC 和BC 代表汽液共存的边界线,它们相交于点C,C 点是纯物质的临界点,它所对应的温度、压力和摩尔体积分别称为临界温度Tc、临界压力pc 和临界体积Vc。 将 p –V –T 曲面投影到平面上,则可以得到二维图形。图2-2 和2-3 分别为图2-1投影出的p –T 图和p –V 图。 图 2-2 纯物质的p –T 图图 2-3 纯物质的p –V 图 2-2 中的三条相平衡曲线:升华线、熔化线和汽化线,三线的交点是三相点。高于临界温度和压力的流体称为超临界流体,简称流体。如图2-2,从A 点到B 点,即从液体到汽体,没有穿过相界面,即是渐变的过程,不存在突发的相变。超临界流体的性质非常特殊,既不同于液体,又不同于气体,可作为特殊的萃取溶剂和反应介质。近些年来,利用超临界流体特殊性质开发的超临界分离技术和反应技术成为引人注目的热点。 图 2-3 是以温度T 为参变量的p –V 图。图中包含了若干条等温线,高于临界温度的等温线曲线平滑并且不与相界面相交。小于临界温度的等温线由三个部分组成,中间水平段为汽液平衡共存区,每个等温线对应一个确定的压力,即为该纯物质在此温度下的饱和蒸气压。曲线AC 和BC 分别为饱和液相线和饱和气相线,曲线ACB 包含的区域为汽液共存区,其左右分别为液相区和气相区。 等温线在两相区的水平段随着温度的升高而逐渐变短,到临界温度时最后缩成一点 C。从图2-3 中可以看出,临界等温线在临界点上是一个水平拐点,其斜率和曲率都等于零,在数学上表示为: 式(2-1)和(2-2)对于不同物质都成立,它们对状态方程等的研究意义重大。 纯物质PVT关系的应用:超临界技术和液化气体成分的选择 2.2气体的状态方程 纯物质的状态方程(Equation of State, EOS) 是描述流体p-V-T性质的关系式,即: f( p, T, V ) = 0 状态方程类型:立方型、多常数型、理论型; 混合物的状态方程从纯物质出发,通过引入混合规则,来计算混合物的热力学性质。 理想气体状态方程 假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。在极低的压力下,真实气体可以当作理想气体处理,以简化问题。理想气体状态方程是最简单的状态方程: 理想气体状态方程的用途:1)在工程设计中,可以用理想气体状态方程进行近似的估算,低压下的气体(特别是难液化的N2,H2,CO,CH4,…);2)可以作为衡量真实气体状态方程是否正确的标准之一,当p→0或者V→∞时,任何真实气体状态方程都应还原为理想气体方程。3)理想气体状态常被作为真实流体的参考态或初值。 2.2.2 立方型状态方程 立方型状态方程是指方程可展开为体积(或密度)的三次方形式。这类方程能够解析求根,有较高精度,又不太复杂,很受工程界欢迎。 (1) van der Waals状态方程 该方程是第一个适用于实际气体的状态方程,与理想气体状态方程相比,它加入了参数a和b,它们分别表征分子间的引力和分子本身体积的影响,可以从流体的 p-V-T实验数据拟合得到,也可以由纯物质的临界数据计算得到。 (2)Redlich-Kwong (RK) 方程 RK方程的计算准确度比 van der Waals方程有较大的提高,可以比较准确地用于非极性和弱极性化合物,但对于强极性及含有氢键的化合物仍会产生较大的偏差。RK方程能较成功地用于气相P-V-T的计算,但计算液相体积的准确性不够,不能同时用于汽、液两相。 为了进

文档评论(0)

ailuojue2 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档