基于动量BP算法的神经网络应用研究.docVIP

基于动量BP算法的神经网络应用研究.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于动量BP算法的神经网络应用研究.doc

基于动量BP算法的神经网络应用研究   摘 要:人工神经网络是近十几年来学者们研究的热点,回顾了BP神经网络模型及其特征,根据BP神经网络算法以及影响房价的因素分析,建立了房价预测模型。运用MATLAB软件通过训练网络,预测2015年该市房产均价。实验结果表明,BP神经网络能在有限的数据条件下,在预测方面具有良好的效果,为我国房地产业的可持续发展提供了科学的咨询和决策手段。   关键词:BP神经网络;预测模型;METLAB仿真实验   中图分类号:F27   文献标识码:A   文章编号2015   1 引言   人工神经网络(Artificial Neural Networks,简写为ANNs)是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。20世纪80年代,美国物理学家J.J.Hopfield建立全互连神经网络模型,以及Rumelhart,McClelland等学者提出反向传播(Back Propagation,简称BP)学习算法,人工神经网络的研究才获得了飞速发展,目前,对人工神经网络理论的应用已渗透到多个领域,如在智能控制、模式识别、自适应滤波和信号处理、传感技术和机器人、非线性优化、知识处理、生物医学工程、金融预测和管理等方面都取得了令人鼓舞的成果。   本文在前人研究的基础之上,通过搜集相关的数据,建立BP神经网络模型并通过MATLAB仿真实验得出预测的结果对于郑州市政府和市民在进行房地产管理和购房上面提供了一定的参考和决策依据,从这方面来说本文具有一定的现实意义。   2 基于动量BP算法的神经网络模型构建   2.1 BP神经网络结构   在人工神经网络的实际应用中,80%-90%的人工神经网络模型都是用的BP神经网络(图1)或者是它的变形形式,它也被称为是前向网络的核心部分。   2.2 房价预测模型构建   经济因素,主要是国家、地区或城市的经济发展水平、经济增长状况、产业结构、就业情况、居民收入水平、投资水平、财政收支、金融状况。这些因素会影响房地产市场的总体供求,特别是影响需求;社会因素,包括人口、家庭、城市化状况等。其中,人口因素包括人口的数量、密度、结构(如文化结构、职业结构、收入水平结构等);影响房价的因素还有很多,比如房地产自身及其周边环境状态,建筑物的外观、设备配置状况等。但在建立BP神经网络预测模型的时候,这些因素不容易被量化,无法纳入模型的训练样本中。在本文的模型构建中,选取5个(地区GDP、人均可支配收入、常住人口数、房产开发投资、居民CPI)与房价密切相关的因素作为模型的输入变量。   本文使用动力BP算法计算出2015年的数据,即根据2004和2005年的数据预测2006年的数据,以此类推来预测2015年的数据。   3 实证分析   为了提高算法训练速度和灵敏性,现将数据进行归一化处理。利用MATLAB软件建立BP网络,输入   样本数据,初始化Epochs值和精度值,设置最大迭代   次数和误差,并设置动量因子mc、学习率。应用sim函数进行仿真,最后对结果进行反归一化。   由上图可以看出,网络在经过8次训练之后,误差低于0.1,迭代进行到12次之后,误差达到预期的目的,网络停止训练。利用编好的程序,预测2012和2013年的房价,由于2012和2013年的房价已经公布,因此可以将预测得到的值与实际值进行比较,得到表2。   通过比较可知,2013、2014年对房价预测的误差在训练要求的范围内,通过MATLAB软件进行预测得到2015年的房价为10068元/平方米。   4 结论及展望   (1)通过以上结果可以看出,利用动量BP算法进行房价的预测是有良好效果的。   (2)文中只选取了对房价影响较为重要的5个因素作为输入变量,在以后的研究中,可以考虑把较为重要的其他因素考虑进去,看看考虑多方面因素是否能够提高BP神经网络对房价预测的精准度。   参考文献   [1]TsungJung Hsieh,HsiaoFen Hsiao,WeiChang Yeh.Forecasting stock markets using wavelet transforms and recurrent neural networks:An integrated system based on artificial bee colony algorithm[J].Applied Soft Computing,2011,(11).   [2]Pan Zhili,Huang Zhongmin,Wang Na,etal.Prediction of shelf life for quickf

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档