- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
空气质量评价预测模型
城市空气质量的评估与预测
摘要
一.问题的提出
1.1背景介绍
环境空气质量指标与人们的日常生活息息相关,同时也在城市环境综合评价中占有重要地位,根据已有的数据,运用数学建模的方法,对环境空气质量进行科学合理的评价,预测与分析是一个很具有实用价值的问题。
目前我国城市环境空气质量评价的主要依据是API值的二级达标天数,即根据已有的API分级制,计算城市的二级空气质量达标天数并以之作为该城市空气质量的评价。
然而,这种评价方法虽然有利于城市空气质量管理,但是API分级制具有统计跨度大且较为粗略的特点,不适合对城市的空气质量做综合客观的评价,因此,我们应该提出更为科学合理的评价方法。
关于环境空气质量已有多方面的研究,并积累了大量的数据,原题附录1-10就是各城市2010年1-11月空气质量的观测值,可以作为评价分析与预测的研究数据。
1.2 需要解决的问题
利用附件中数据,建立数学模型给出十个城市空气污染严重程度的科学排名。
建立模型对成都市11月的空气质量状况进行预测。
收集必要的数据,建立模型分析影响城市空气污染程度的主要因素是什么?
二、基本假设
1.表中的API值是准确的,忽略仪器测量误差对测量数据造成的影响
2.API值对不同污染物的危害程度具有可度量性,即:相同API值对应的不同污染物危害程度相等。
3.根据附录中的数据,API首要污染物为二氧化氮的天数在十个城市2010年的观测数据中仅出现一次,二氧化氮对空气质量的综合评价的影响忽略不计。
三、问题的分析
3.1 提出新的空气质量评价方法对城市污染程度排名应该注意的问题。
总的来说,提出一种科学合理的评价方法,应该以各城市的空气污染指数(API)观测数据为基础,对不同城市空气质量进行量化综合评价,这个综合评价在符合空气质量实际的同时,应该较为细致与直观,既能够体现该城市空气质量的整体水平,又能够方便地对不同城市的空气质量进行合理客观的对比。
第一.传统的API指数评价制度具有较大的局限性,其主要原因是API空气质量分级制具有跨度较大的特点,举例来说,以可吸入颗粒物或二氧化硫为最大污染物计算,API数值51到100都属于二级,对应的日均浓度值是51到150微克/立方米。这种分级制度对观测数据进行了较大幅度的简化,分级制的数据较为简洁,仅以级次衡量城市的空气质量水平,有利于部分问题的决策,但是,这种简化的级次评分制浪费了大量的观测信息,不适合对一个城市的空气质量进行长期的管理,评价,与预测,更不利于对城市空气质量进行细致客观的评价与城市之间污染程度的对比。
所以,新的评价体制应该充分地考虑到对信息的最大程度利用与对空气质量的综合客观分析。
第二.空气污染程度的评价最为直观与简便的方法是计算观测时间区间上的平均值,但是这种简便的数据处理方法具有较大的局限性,结合污染物种类与API观测数据值分析,问题可以归结为基于API数据的综合评价问题,故可以引进综合评价问题的方法对平均值计算法进行适当的修正与改进,建立基于综合评价方法的评分体制,对空气质量进行评分与排序。
第三.这个对空气质量的综合排名问题以不同种类的污染物的API数值为基础,以对十个城市的污染程度进行综合排名为最终目的,具有一定的层次性,因此,还可以可以考虑建立以对十个城市的污染物排序为决策层,以不同种类的污染物API数据为准则层,以十个待评城市为方案层的选优排序问题,根据层次分析方法,确定方案层对决策层的“组合权重”,从而达到建立层次分析模型对十个城市污染程度进行综合排名的目的。
3.2 对成都11月份空气质量进行预测问题的分析
1)对成都十一月空气质量进行合理的预测,我们应该对数据进行有效的分析处理,考虑多方面因素,建立数学模型进行综合预测,通过对数据的初步观测,并作出成都市自2005年1月1至2010年11月4日的月平均API值折线图(如图3-1所示),我们发现,数据不具有很好的规律性,无法用一个确定的函数去描述,又通过对问题的分析,我们认为对空气质量的预测问题是一个针对环境系统的预测问题,而环境系统具有系统内部作用因素较多,系统内部各因素作用关系复杂的特点,因此,针对数据和问题的特点,我们考虑建立灰色预测模型,利用灰色系统分析方法,对数据进行有效利用,并作出最合理的预测。
图3-1
3.3 关于确定空气污染程度的主要作用因素问题的分析
由3.2的分析可知,空气环境系统是一个比较复杂的系统,所以,空气污染现象也一定是一个多因素共同作用的结果,不同的
文档评论(0)