统计预测与决策课程论文..docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
统计预测与决策课程论文.

统计预测与决策 课程论文 题 目 基于ARMA模型的西安进出口总额时间序列分析与预测 学生姓名 解盼 学生学号 13610704150504 专 业 经济统计学 班 级 金融统计班 提交日期 二〇一六年五月 基于ARMA模型对西安进出口总额时间序列分析与预测 摘要:本文分析了 1987-2013年西安地区进出口总额时间序列,在将该时间序列平稳化的基础上,建立自回归移动平均模(ARMA),从中得出西安进出口总额序列的变化规律,并且预测2014,2015年西安进出口总额的数值。 关键词:时间序列预测;进出口总额;ARMA模型 1. 前 言 进出口总额指实际进出我国国境的货物总金额。进出口总额用以观察一个国家在对外贸易方面的总规模。 进出口总额包括:对外贸易实际进出口货物,来料加工装配进出口货物,国家间、联合国及国际组织无偿援助物资和赠送品,华侨、港澳台同胞和外籍华人捐赠品,租赁期满归承租人所有的租赁货物,进料加工进出口货物,边境地方贸易及边境地区小额贸易进出口货物(边民互市贸易除外),中外合资企业、中外合作经营企业、外商独资经营企业进出口货物和公用物品,到、离岸价格在规定限额以上的进出口货样和广告品(无商业价值、无使用价值和免费提供出口的除外),从保税仓库提取在中国境内销售的进口货物,以及其他进出口货物。全称为自回归移动平均模型(Auto-regressive Moving Average Model,简称 ARMA)是研究时间序列的重要方法。其在经济预测过程中既考虑了经济现象在时间序列上的依存性, 又考虑了随机波动的干扰性, 对经济运行短期趋势的预测准确率较高, 是近年应用比较广泛的方法之一。ARMA模型是由美国统计学家G.E.P.Box 和 G.M.Jenkins在20世纪70年代提出的著名时序分析模型,即自回归移动平均模型。ARMA模型有自回归模型AR(q)、移动平均模型MR(q)、自回归移动平均模型ARMA(p,q) 3种基本类型。其中ARMA(p,q)自回归移动平均模型,模型可表示为: 其中,为自回归模型的阶数,为移动平均模型的介数;表示时间序列在时刻的值;为自回归系数;表示移动平均系数;表示时间序列在时期的误差或偏差。 2.2 ARMA模型建模流程 首先用ARMA模型预测要求序列必须是平稳的,也就是说,在研究的时间范围内研究对象受到的影响因素必须基本相同。若所给的序列并非稳定序列,则必须对所给的序列做预处理,使其平稳化,然后用ARMA模型建模。建模的基本步骤如下: (1)求出该观察值序列的样本自相关系数(ACF)和样本偏相关(PACF)的值。 (2)根据样本自相关系数和偏自相关系数的性质选择适当的模型进行拟合。 (3)估计模型中未知参数的值。 (4)检验模型的有效性。如果拟合模型通不过检验,转向步骤(2),重新选择模型再拟合。 (5)模型优化。如果拟合模型通过检验,仍然转向步骤(2),充分考虑各种可能,建立多个拟合模型,从所有通过检验的拟合模型中选择最优模型。 (6)利用拟合模型,预测序列的将来走势。 3. 西安进出口时间序列模型的建立 3.1 数据的预处理 本文选取了西安1987-2013年的进出口总额数据作为时间序列观察值。对此时间序列做时序图如图1所示: 图1 我国进出口总额时序图 由时间序列的时序图可以发现进出口总额随时间的增长是呈指数趋势。因此,对原始序列作对数变换并作出其时序图如图1所示: 图2 取对数后的进出口总额时序图 通过观察取对数后的进出口时序图,发现经过处理后的序列具有趋势性。由于进出口总额带有很强的趋势成分, 而我们的目的主要是利用ARMA 模型对其周期成分进行分析, 因此需要对此类的数据先进行消除趋势性的处理, 然后建立ARMA模型。 拿到观察值序列之后,无论是采用确定性时序分析方法还是随机时序分析方法,分析的第一步都是要通过有效的手段提取信息中所蕴含的确定性信息。在Box和Jenkins在Time Series Analysis Forecasting and Control一书中特别强调差分方法的使用,他们使用大量的案例分析证明差分方法是一种非常简便﹑有效的确定性信息提取方法。实践中,我们会根据序列的不同特点选择合适的差分方式,常见情况有以下三种; 序列蕴含着显著的线性趋势,一阶差分就可以实现趋势平

文档评论(0)

dsf80fhg0j + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档