- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于RBF神经网络的负荷预测研究综述.doc
基于RBF神经网络的负荷预测研究综述
摘要:负荷预测是实现电力系统优化运行的基础,对于电力系统的安全性、可靠性和经济性都有着显著的影响。RBF是一种三层前馈神经网络,具有良好的函数逼近性能,已被广泛应用到电力负荷预测中,并取得良好的效果。本文主要整理并介绍当前基于RFB神经网的负荷预测方法,对存在的问题进行了分析,并对未来的发展进行了展望。
关键词:负荷预测 RBF 神经网络 电力系统
0 引言
负荷预测是实现电力系统优化运行的基础,对于电力系统的安全性、可靠性和经济性都有着显著影响。负荷预测是指从已知的经济、社会发展和电力系统需求出发,考虑政治、经济、气候等相关因素,通过对历史数据的分析和研究,探索事物之间的内在联系和发展规律,以未来经济和社会发展情况的预测结果为依据,对未来的电力需求做出估计和预测[1]。相关研究工作已在国内广泛开展,其研究成果已经广泛应用到电力系统实际运行维护当中,并取得了良好的经济效益。
负荷预测的方法主要分为两大类,分别是基于参数模型预测法和基于非参数模型预测方法。基于参数模型的预测方法主要有单耗法、负荷密度法、电力弹性系数法、回归模型预测法、趋势外推预测法、时间序列预测法等;基于非参数模型预测方法主要有专家系统法、模糊预测法、灰色预测法、人工神经网络预测法、小波分析预测法等[2]。
RBF神经网络具有良好的函数逼近功能,在函数回归上表现出较好的性能,已被广泛应用到人工智能领域。在负荷预测方面,RBF也得到了广泛的应用。本文的主要工作是整理了主要的基于RBF的电力负荷研究内容,对存在的问题进行了分析,并对未来的发展进行了展望。
本文接下来的内容安排如下,第二章介绍了RBF神经网络的基本原理,第三章对基于RBF的电力负荷研究进行了综述,最后给出了总结。
1 RBF神经网络基本原理
RBF网络的结构与多层前向网络类似,如图1所示,它由三层组成:第一层为输入层,第二层为隐含层,第三层为输出层[3]。
假设RBF神经网络的输入向量为n维,学习样本为 (X,Y),其中,X=(X1,X2,…XN),为输入向量,Xi=(Xi1,Xi2,…,XiN)T,1≤i≤Nj;Y=(y1,y2,…,yN),为期望输出;N为训练样本个数。当神经网络输入为Xi时,隐含层第j节点的输出如式(1)所示[4]。
对于全体输入学习样本,RBF神经网络的输出如式(2)所示。
2 基于RBF负荷预测相关研究
文献[4]通过建立径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIs)相结合的短期负荷预测模型来应对实时电价对短期负荷的影响。由于固定电价时代的预测方法在电价敏感环境下效果不理想,文章根据近期实时电价的变化应用ANns系统对RBF神经网络的负荷预测结果进行修正,提高预测效果。
文献[5]研究了基于RBF神经网络的多变量系统建模。文章将正规化正交最小二乘算法引入多输入多输出系统,进行相关研究,建立了基于RBF神经网络的多变量系统的模型。对电厂单元机组负荷系统进行建模仿真研究的结果表明,用该方法建立的多变量热工系统的非线性模型是有效的,具有较高的辨识精度和较好的泛化能力。
文献[6]提出了一种基于交替梯度算法的RBF神经网络,并将之应用到负荷预测领域,取得较好的效果。通过使用交替梯度算法来优化RBF输出层权值和中心与偏差值来得到改进的RBF算法。与传统梯度下降算法相比,改进的RBF算法具有更高的预测精度和更快的收敛速度。模型综合考虑了气象数据、日类型等影响负荷变化的多种因素,实验结果表明改进的RBF网络算法具有更优的性能。
文献[7]将RBF神经网络和专家系统相结合,在深入研究天气和特殊事件对电力负荷的影响的基础上,提出了新的负荷预测模型。利用RBF神经网络的非线性逼近能力预测出日负荷曲线,然后利用专家系统根据天气因素或特殊事件对负荷曲线进行修正,使其在天气突变等情况下也能达到较高的预测精度。表1为文献[7]的实验结果对比表。
文献[8]将模糊聚类分析中的隶属度应用到负荷预测应,通过隶属度原理得到一批与预测日在样本信息上类似的历史日。采用模糊聚类分析获得的样本作为RBF神经网络的训练样本,并应用改进的RBF神经网络进行训练,在不需大量训练样本的前提下实现对短期负荷的预测。
影响电网负荷预测的因素很多,而地区电网负荷易受气象因素影响,文献[9]针对电网负荷预测以上特点,把气象因素作为影响负荷的主要因素,采用模糊规则控制的径向基神经网络(RBF)算法,对某地区电网的日负荷数据进行预测,实验证明采用这种预测方法可以提高负荷预测的速度和精度。表2给出了文献[9]的实验结果表。
3 结束语
本文针对基于RBF神经网络
您可能关注的文档
最近下载
- 2022年北京市十二中初三(上)期中数学试卷及答案.pdf VIP
- 鲁教版初中九年级化学各章节知识点归纳复习提纲.doc
- 海鲜市场项目可行性研究幻灯片.pptx VIP
- 微电网能量管理:技术、策略与发展路径探究.docx VIP
- 某污水处理工艺设备安装施工方案.docx VIP
- 理智与情感:爱情的心理文化之旅 智慧树网课章节测试答案.docx VIP
- 03.1 20CS03-1 一体化预制泵站选用与安装(一).docx VIP
- 2025年公司组织架构图及各部门职能要求模板参考(架构图可编辑).pdf VIP
- 级配碎石施工技术课件.ppt VIP
- 神话传说故事与中国文化 智慧树 知到答案.docx VIP
文档评论(0)