支付宝分析师分享..docx

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
支付宝分析师分享.

【支付宝分析师分享】数据分析从入门以及如何成长我当年和在进入数据分析这块行业的时候也是和很多刚进入这块的同学一样,一样的迷茫,一样的不知道该学习什么,一样的不知道为什么需要有什么样的职业规划。刚开始选择了在国内的一家一线品牌的电商公司,具体工作是做网站分析师。所谓的网站分析师,就是要对电商网站的各种常规指标进行监控,需要对异常的数据能够解释清楚现象和原因,到底是因为什么导致流量的波动、还是因为网站埋点出现了问题。以及像网站推广的不同渠道的优劣情况,访问、点击、ROI等进行分析,而像如果公司需要做一些大型的活动时,还需要能够对不同专题活动的效果进行分析,能够知道哪些内容是用户感兴趣点击的。??当时也没有人听说什么是大数据,而像数据分析,数据挖掘还都停留在亚马逊神奇的推荐算法和60万招一个算法工程师的故事上。而当时我们数据这块行业,大部分人戏称的BI,好听点叫商业智能,都是在做关于数据仓库的底层搭建和OLAP、OLTP这样的报表上。也正是因为从最底层的数据开始做起,才让我明白了整个数据的全貌或者说数据整个生态链都有哪些。可能有同学会说,我是学统计的,对太技术类的不感兴趣。其实不然,就像我们去读历史一样,作为数据分析师本身就需要有那种追本溯源的精神,当你了解到数据都是怎么产生和存储的之后,你就会知道为什么我的数据量会这么少,为什么数据处理环节出现了异常,为什么公司没有把所有的数据都存储起来。好了,我们就聊聊今天的话题:数据分析师该怎么入门,从一个初级的数据分析师变身为数据分析专家、数据分析大师?我们先来看一下某著名互联网公司,对不同级别的数据分析师的要求是什么样。?图(一)数据分析师的不同级别要求这图一可以看出,在成长为数据分析专家之前,更多的是需要能够在问题识别、分析规划、数据获取、展现演示、价值应用、执行和管理能力、以及影响力上有不同层次的要求。作为一个刚入门的数据分析师,需要能够把在数据分析的基础技能上夯实:掌握基本的数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等)掌握基本的数据分析软件(比如,VBA,Matlab,Spss,Sql等等)掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)这些基础知识,在学校里尽量的学习,而且我来到了一些商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。在这里,我给大家推荐几本书,《统计学》《图表之道》《谁说菜鸟不会数据分析》。另外课后我会把之前整理过的知识点发给大家。而对于已经在数据分析岗摸爬滚打1年多后,怎么该去晋级,在数据分析这块领域做的更加深入,我们称之为合格的数据分析师。这时候就不只是掌握基本的统计知识或工具应用,需要能够独立完成一项完整的数据分析工作,能够通过数据准确定位业务上的问题,能够独立完成一份完整的数据分析报告,能够尝试将自己的分析结果讲给被人听,被别人接受和采纳。而怎么才能做到这几点呢??1.学习怎么写报告首先,要有一个好的框架,跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;第二,每个分析都有结论,而且结论一定要明确,如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;第三,分析结论不要太多要精,如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;第四、分析结论一定要基于紧密严禁的数据分析推导过程,不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;第五,好的分析要有很强的可读性,这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站在读者的角度去写分析邮件;第六,数据分析报告尽量图表化,这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从;第七、好的分析报告一定要有逻辑性,通常要遵照:1、发现问题--2、总结问题原因--3、解决问题,这样一个流程,逻辑性强的分析报告也容易让人接受;第八、好的分析一定是出自

文档评论(0)

stzs + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档