模式识别复习要点和参考习题.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
模式识别复习要点和参考习题

复习要点 绪论 举出日常生活或技术、学术领域中应用模式识别理论解决问题的实例。 答:我的本科毕设内容和以后的研究方向为重症监护病人的状态监测与预诊断,其中的第一步就是进行ICU病人的死亡率预测,与模式识别理论密切相关。主要的任务是分析数据库的8000名ICU病人,统计分析死亡与非死亡的生理特征,用于分析预测新进ICU病人的病情状态。 按照模式识别的方法步骤,首先从数据库中采集数据,包括病人的固有信息,生理信息,事件信息等并分为死亡组和非死亡组,然后分别进行数据的预处理,剔除不正常数据,对数据进行插值并取中值进行第一次特征提取,然后利用非监督学习的方法即聚类分析进行第二次特征提取,得到训练样本集和测试样本集。分别利用判别分析,人工神经网络,支持向量机的方法进行训练,测试,得到分类器,实验效果比传统ICU中采用的评价预测系统好一些。由于两组数据具有较大重叠,特征提取,即提取模式特征就变得尤为重要。语音识别,图像识别,车牌识别,文字识别,人脸识别,通信中的信号识别; ① 文字识别 汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。 ② 语音识别 语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。 ③ 指纹识别 我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹分成有以下几个大的类别:环型(loop),螺旋型(whorl),弓型(arch),这样就可以将每个人的指纹分别归类,进行检索。指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。 ③ 遥感 遥感图像识别已广泛用于农作物估产、资源勘察、气象预报和军事侦察等。 ④ 医学诊断 在癌细胞检测、X射线照片分析、血液化验、染色体分析、心电图诊断和脑电图诊断等方面,模式识别已取得了成效。 统计决策 3、最小错误率贝叶斯决策方法与最小风险贝叶斯决策方法 4、正态分布下最小错误率决策与Neyman-Pearson决策方法 (1)假设在某个地区的细胞识别中正常和异常 两类的先验概率分别为 正常状态 : 异常状态: 现有一待识的细胞,其观测值为,从类条件概率密度分布曲线上查得 并且已知损失系数为(11=0,(12=1,(21=6,(22=0。试对该细胞以以下两种方法进行分类:①基于最小错误概率准则的贝叶斯判决;②基于最小风险的贝叶斯判决。 解:①基于最小错误概率准则的贝叶斯判决 ②基于最小风险的贝叶斯判决 (2)已知两个一维模式类别的类概率密度函数为 先验概率P((1)=P((2),损失函数,(11=(22=0,(12=0.6,(21=0.4。 (1)求最小平均损失Bayes判决函数; (2)求总的误判概率P(e); 解:先求先验概率: 、 求条件风险: 期望风险要求最小,当时满足要求,即 (3)对于这个两类一维问题,若这两类的类概率密度分别服从正态分布N(0,(2)和 N(1,(2),证明使平均决策风险最小的决策阈值为 这里,假设风险函数(11=(22=0 。一维正态分布: 解:先求先验概率: 、 求条件风险: 期望风险要求最小,当时满足要求,即 概率密度函数估计 最大似然估计方法与贝叶斯估计方法 答:最大似然估计是把待估的参数看作固定的未知量,而贝叶斯估计则是把待估的参数作为具有某种先验分布的随机变量,通过对第i类学习样本Xi的观察,使概率密度分布P(Xi/θ)转化为后验概率P(θ/Xi

文档评论(0)

zilaiye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档