岭回归理论知识.docxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
岭回归理论知识

一、普通最小二乘估计带来的问题 当自变量间存在多重共线性时,回归系数估计的方差就很大,估计值就很不稳定。此时模型或数据的微小变化有可能造成系数估计的较大变化,对预测值产生较大影响。下面进一步用一个模拟的例子来说明这一点。例1 假设已知,与的关系服从线性回归模型给定,的10个值,如下表:表1.二.、岭回归提出的背景岭回归是1970年由Hoerl和Kennard提出的, 它是一种有偏估计,是对最小二乘估计的改进。设有多重线性回归模型,参数的最小二乘估计为则 当自变量出现多重共线性时,普通最小二乘估计明显变坏。当时,就会变得很大,这时,尽管是的无偏估计,但很不稳定,在具体取值上与真值有较大的偏差,甚至会出现与实际意义不符的正负号。设想给加上一个正常数矩阵(),那么接近奇异的程度就会变小。先对数据作标准化,标准化后的设计阵仍用X表示。称为岭回归估计。这里的成为岭参数。当时的岭回归估计就是普通的最小二乘估计。因为岭参数不是唯一确定的,所以我们得到的岭回归估计实际是回归参数的一个估计族,取不同的值时的取值不同。以为横坐标,为纵坐标的直角坐标系,可分析估计族的稳定性。?优点:比最小二乘估计更稳定三、岭迹分析?在岭回归中,岭迹分析可用来了解各自变量的作用及自变量之间的相互关系。下图所反映的几种有代表性的情况来说明岭迹分析的作用。图1.岭迹图四、岭参数的选择(一)方法1. 由残差平方和来确定值2. Hoerl-Kennard公式3. 方差扩大因子法4. 岭迹法岭迹法的直观考虑是,如果最小二乘估计看来有不合理之处,如估计值以及正负号不符合经济意义,则希望能通过采用适当的来加以一定程度的改善,值得选择就显得尤为重要。选择值得一般原则是:(1)各回归系数的岭估计基本稳定;(2)用最小二乘估计时符号不合理的回归系数,其岭估计的符号变得合理;(3)回归系数没有不合乎经济意义的绝对值;(4)残差平方和增大不太多。图2如上图,当取时,各回归系数的估计值基本上都能达到相对稳定。缺点:用岭迹法来确定值缺少严格的令人信服的理论依据,存在一定的主观人为性.优点:恰好发挥定性分析与定量分析有机结合.?(二)岭回归选择变量的原则:(1)在岭回归中设计矩阵X已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量。(2)随着的增加,回归系数不稳定,震动趋于零的自变量也可以剔除。(3)如果依照上述去掉变量的原则,有若干个回归系数不稳定,究竟去掉几个,去掉哪几个,这并无一般原则可循,这需根据去掉某个变量后重新进行岭回归分析的效果来确定。 ??讲稿——岭迹图解说Y有显著影响????

文档评论(0)

zilaiye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档