有限元 螺栓简化.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
1 概述 螺栓是机载设备设计中常用的联接件之一。其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图1所示组合装配体,底部约束。两圆筒连接法兰通过8颗螺栓固定。端面受联合载荷作用。 ? ? 图1 三维几何模型 2.2 单元及网格 抽取圆筒壁中性面建模,采用四节点壳元(shell),设置壳元厚度等于实际壁厚。 法兰处的过渡圆弧处网格节点设置密一些,其它可以相对稀疏。 在法兰上下两节点之间建立多点约束单元(RBE2,算例1,图3)或梁元(Beam, 算例2,图4)来模拟该位置处的螺栓连接。 ? ? 图3 算例1(多点约束单元法)连接网格 ? ? 图4 算例2(梁元法)连接网格 在圆筒端面中心建立不属于结构模型的参考节点,通过加权平均约束单元RBE3,建立端面节点与参考点的主从约束关系。外加载荷施加在参考点上,然后被均匀分配到端面节点。 这里,对于多个面的网格划分,应当注意在各几何连接面法矢量的一致性。这样划分网格时,才能保证shell单元法矢量的一致性。图2显示了各面的法矢量方向是一致的。 ? ? 图2 面法向量方向图 对于复杂曲面模型,还应当注意连接面接缝处网格协调;网格划分结束,必须用Equivalence合并相同节点。 ? ? 图5 整体模型有限元网格 2.3材料属性、边界约束及载荷 计算中所使用的材料参数如下: 圆筒:E=70 GPa,μ=0.3 螺栓:E=184GPa,μ=0.3 底部法兰在8处螺栓处约束,在独立节点处施加联合载荷。 3 有限元结果 3.1 应力云图 从图6、图7看出,两种模拟方法,结构整体应力分布相当。 ? ? 图6 算例1(多点约束单元法)应力云图 ? ? 图7 算例2(梁元法)应力云图 3.2 螺栓强度核算 在两算例中,可以在F06结果文件中得到螺栓对应的节点编号和节点载荷。从结果文件可以看出,模拟螺栓的两对应节点载荷大小相等、方向相反。所以,只需取其中一个节点分析即可。下表1、表2以8个上法兰节点为例,各节点载荷分量即为单个螺栓所受的载荷,载荷单位N。 表1 算例1(多点约束单元法)螺栓连接处节点载荷 ? ? 表2 算例2(梁元法)螺栓连接处节点载荷 ? ? 由表可以看出,Fy为连接螺栓的轴向载荷,正值表示螺栓受拉,负值表示螺栓受压缩载荷。而实际工作状况下,连接螺栓是不会受压。表中负值的出现,是由构成单元的两节点之间位移约束特性所决定,这里应当舍负取正。 表1、2中各对应节点Fy值近似相等,Fx和Fz值有所差异。 为了计算方便,以表1(算例1多点约束单元法)为例,分别选取螺栓最大拉伸载荷和螺栓最大剪切载荷计算其相关强度,计算结果偏保守。 螺栓材料1Cr18Ni9Ti,M6 螺栓拉伸载荷:Fy=4194 N 螺栓剪切载荷: ? ? 螺栓拉伸: ? ? 螺栓剪切: ? ? 根据第4强度理论: ? ? 螺栓剩余强度系数: ? ? 说明螺栓强度满足要求。 4 分析与结论 由上分析可知,在有限元分析时,多点约束单元法和梁元法均可以对装配体中的螺栓进行模拟。细节处的节点载荷有差异,但不影响整体结果正确性。两种方法求得的相应节点载荷可用第四强度理论对螺栓进行校核。 相对来说,多点约束单元模拟事先不需要知道螺栓直径大小,只关心螺栓连接位置,操作上要方便;梁元法则需要设置

文档评论(0)

peain + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档