UHF RFID无源标签的芯片供电机理.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
UHF RFID无源标签的芯片供电机理.doc

UHF RFID无源标签的芯片供电机理   【摘 要】   介绍了UHF RFID无源标签的供电特点,即采用无线功率传输供电,或利用片上储能电容充放电实现对芯片电路供电。同时为保证通信需求,应该做到充电与放电供需平衡,可取的设计是将标签所接收的射频能量大部分用于浮充供电;为集中更多能量用于浮充供电,应当尽量减少射频能量的其它应用消耗,包括接收时段的解调解码、应答时段的调制和发送。   【关键词】   无源标签 码分射频识别 低功耗   1 引言   国外基于CDMA的RFID空中接口研究工作,至今仍然停留在有源标签、只发不收的研究阶段,其直接原因通常归咎于无源标签未能实现芯片低功耗设计,可见芯片的低功耗设计是非常必要的。因此,只有首先弄清无源标签的供电机理,继而针对UHF RFID空中接口的应用环境进行分析,才可能寻得完整的解决方案。本文旨在介绍UHF RFID无源标签的芯片特殊的供电机理。   2 UHF RFID无源标签供电特点   2.1 借助无线功率传输供电   无线功率传输是利用无线电磁辐射方法将电能从一个地方传送到另一个地方,其工作原理如图1所示。工作过程是将电能经射频振荡转换为射频能,射频能经发射天线转换为无线电电磁场能,无线电电磁场能经空间传播到达接收天线,再由接收天线转换回射频能,检波变为直流电能。   1896年意大利人马可尼(Guglielmo Marchese Marconi)发明了无线电,实现了跨越空间的无线电信号传输。1899年,美国人泰斯拉(Nikola Tesla)提出了用无线功率传输的思路,并于科罗拉多州建立了一个60m高、底部加感、顶部加容的天线,利用150kHz的频率,将300kW输入功率在距离长达42km的距离上传输,在接收端获得了10kW的无线接收功率。   UHF RFID无源标签供电沿用了这个思路,由阅读器通过射频向标签供电。但是,UHF RFID无源标签供电与Tesla试验有巨大的差别:频率高出近万倍,天线尺寸缩短达千倍。由于无线传输损耗与频率平方成正比,与距离的平方成正比,显然,传输损耗增长是巨大的。最简单的无线传播模式是自由空间传播,传播损耗与传播波长的平方成反比,与距离的平方成正比,自由空间传播损耗为LS=20lg(4πd/λ)。若距离d单位为m,频率f单位为MHz,则LS= -27.56+20lgd+20lgf。   UHF RFID系统基于无线功率传输机理,无源标签没有自备供电电源,需借助于接收阅读器发射的射频能量,通过倍压整流,即狄克逊泵(Dickson charge pump)建立直流供电电源。   UHF RFID空中接口适用的通信距离主要决定于阅读器发射功率和空间基本传播损耗。UHF频段RFID阅读器发射功率通常被限制为33dBm。由基本传播损耗公式,忽略其它任何可能产生的损耗,可以算出通过无线功率传输到达标签的射频功率。UHF RFID空中接口通信距离与基本传播损耗的关系和到达标签的射频功率如表1所示:   表1 通信距离与传播损耗和到达标签射频功率的关系   距离/m 1 3 6 10 50 70   基本传播损耗/dB 31 40 46 51 65 68   到达标签的射频功率*/dBm 2 -7 -13 -18 -32 -35   注:假定阅读器发射功率为33dBm。   由表1可见,UHF RFID无线功率传输具有传输损耗大的特点,由于RFID遵从国家短距离通信规则,阅读器发射功率受限,所以标签可供电功率低。随着通信距离加大,无源标签接收射频能量按频方率下降,供电能力迅速减弱。   2.2 借助片上储能电容充放电实施供电   (1)电容器充放电特性   无源标签利用无线功率传输获取能源,转变为直流电压,对片上电容充电储能,然后通过放电对负载供电。因此,无源标签的供电过程就是电容充放电过程。电容充放电过程如图2所示,建立过程是纯充电过程,供电过程是放电和补充充电过程,补充充电必需在放电电压到达芯片最低供电电压以前开始。   图2 电容器充放电特性   (2)电容器充放电参数   1)充电参数   充电时间长数:τC=RC×C   充电电压:   充电电流:   式中RC为充电电阻,C为储能电容。   2)放电参数   放电时间长数:τD=RD×C   放电电压:   放电电流:   式中RD为放电电阻,C为储能电容。   以上说明了无源标签的供电特性,既不是恒压源,也不是恒流源,而是储能电容充放电。当片上储能电容充电到达芯片电路工作电压V0以上,便能对标签供电。储能电容开始供电的同时,其供电电压就开始下降,降至芯片工作电压V0以下时,储能电容失去供电能力,芯片将不能继续工作。因

文档评论(0)

lnainai_sj + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档