- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Factorization.ppt
Previously Two view geometry: epipolar geometry Stereo vision: 3D reconstruction Today Orthographic projection Two views 3 or more views: factorization – simultaneous recovery of motion and shape Orthographic Projection (Reminder) Parallel projection rays, orthogonal to image plane Focal center at infinity Two Views Implies that Eliminating Z Since Therefore Epipolar lines This is a linear equation Further Simplification Select one point in first image and its corresponding point in the second image to be the origin of the two images In this coordinate frame translation is 0 Expression for epipolar lines: Epipolar Line Recovery We need 4 corresponding points: 1 to eliminate translation 3 to determine the 4 components of R up to scale The rest of the components cannot be determined In particular, cannot be determined from , because these components are known only up to scale Shape Recovery from Two Views Perspective: Translation recovered up to scale 3D shape recovered up to scale Recovery only if non-zero translation No calibration – recovery up to a projective transformation (“projective shape”) Orthographic: Rotation along epipolar line cannot be recovered 3D shape cannot be recovered Recovery is possible up to an affine transformation (“affine shape”) Recovery only if non-trivial rotation Translation along line at infinity = rotation Recovery from Three Views Under orthographic projection metric recovery is possible from three views Only rotation matters Rotation has three degrees of freedom Given an image, one rotation is in the image and two are out of plane rotations Ignoring the in-plane rotation we can associate the image with a point on the unit sphere Recovery from Three Views Recovery from Three Views Recovery from Three Views a, b, c are unknown a, b, g are known – angles between epipolar lines Can we determine lengths from angles? Recovery from Three Views In the plane the angles determine the sides of a t
文档评论(0)