空间泊松点过程.ppt

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
空间泊松点过程

Spatial Poisson Processes * * The Spatial Poisson Process Consider a spatial configuration of points in the plane: Notation: Let S be a subset of R2. (R, R2, R3,…) Let A be the family of subsets of S. For let |A| denote the size of A. (length, area, volume,…) Let N(A) = the number of points in the set A. (Assume S is normalized to have volume 1.) Then is a homogeneous Poisson point process with intensity if: For every finite collection {A1, A2, …, An} of disjoint subsets of S, N(A1), N(A2), …, N(A3) are independent. For each Alternatively, a spatial Poisson process satisfies the following axioms: If A1, A2, …, An are disjoint regions, then N(A1), N(A2), …, N(An) are independent rv’s and N(A1 U A2 U … U An) = N(A1) + N(A2) + … + N(An) The probability distribution of N(A) depends on the set A only through it’s size |A|. There exists a such that There is probability zero of points overlapping: If these axioms are satisfied, we have: for k=0,1,2,… Consider a subset A of S: There are 3 points in A… how are they distributed in A? A Expect a uniform distribution… In fact, for any , we have Proof: So, we know that, for k=0,1,…,n: ie: N(B)|N(A)=n ~ bin(n,|B|/|A|) Generalization: For a partition A1, A2, …, Am of A: for n1+n2+…+nm = n. (Multinomial distribution) Simulating a spatial Poisson pattern with intensity over a rectangular region S=[a,b]x[c,d]. simulate a Poisson( ) number of points (perhaps by finding the smallest number N such that) scatter that number of points uniformly over S (for each point, draw U1, U2, indep unif(0,1)’s and place it at ((b-a)U1+a),(d-c)U2+c) Consider a two-dimensional Poisson process of particles in the plane with intensity parameter . Let’s determine the (random) distance D between a particle and its nearest neighbor. For x0, So, for x0. In 3-D we could show that: *

文档评论(0)

maxmin + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档