- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
电化学显微镜的发展及应用,扫描电化学显微镜,扫描电化学探针显微镜,电化学显微镜,电化学原理及应用,冶金电化学理论及应用,电化学方法原理和应用,应用电化学,电化学的应用,应用电化学ppt
浅谈电化学扫描显微镜的发展与应用
电化学扫描显微镜简介
1984年,Engstrom 把生理学上的离子电渗技术引入化学领域,研究了固体电极表面微区电化学活性,达到10μm的分辨率;1986年,Engstrom小组利用微电极探针监测扩散层内毫秒级寿命反应中间体NAD等电极产物的空间分布,可达2μm分辨率;同年,电分析化学家Bard小组在使用扫描隧道显微镜(STM)首次进行溶液中导体表面研究时,为了弥补STM不能提供电化学信息的不足,明确提出了扫描电化学显微镜的概念并予实验实现。
扫描电化学显微镜(SECM)是80年代末由..Bard的小组提出和发展起来的一种扫描探针显微镜技术。它是基于年代末超微电极()及代初扫描隧道显微镜(STM)的发展而产生出来的一种分辨率介于普通光学显微镜与STM之间的电化学现场检测新技术
与STM和AFM技术不同,扫描电化学显微镜基于电化学原理工作,可测量微区内物质氧化或还原所给出的电化学电流。该技术驱动一支超微电极(探针)在离固相基底表面很近的位置进行扫描,从而获得对应的微区电化学和相关信息。可用于研究:
(1)导体和绝缘体基底表面的几何形貌;
(2)固/液、液/液界面的氧化还原活性;
(3)分辨不均匀电极表面的电化学活性;
(4)微区电化学动力学;
(5)生物过程及对材料进行微加工。
工作模式及原理
2.1 工作模式
SECM是以电化学原理为基础的一种扫描探针新技术,有多种不同的操作模式。
反馈模Feedback Mode(SECM试验中最常用)
收集模式(Generation/collection Mode)
穿透模式(Penetration Mode)
离子转移反馈模式(Ion transfer Mode)
平衡扰动模式(Equilibrium perturbation Mode)
电位测定模式(Potentionmetric detect Mode)
图2. SECM几种操作模式的原理示意图
工作原理
SECM的工作原理一般是:当探针(常为超微圆盘电极,UMDE)与基底同时浸入电活性物质O的溶液中,在探针上施加电位(ET)使O发生还原反应,
当探针靠近导电基底时,其电位控制在R氧化电位,则基底产物O可扩散回探针表面使探针电流iT就越大。这个过程则被称为正反馈。当探针靠近绝缘基底表面时,本体溶液中O组分向探针的扩散受到基底的阻碍,故探针电流iT减小;且越接近样品,iT越小。这个过程被称作负反馈。当探针原理基底时,正负反馈均可忽略,此时微探针电流(iT)为常规微电极稳态电流,
式中F为法拉第常数,CO为O的本体浓度,DO为O的扩散系数,a为探针电极半径,为电极反应转移的电子数。通常SECM工作时采用电流法。SECM也可工作于恒电流状态,即恒定探针电流,检测探针z向位置变化以实现成像过程。也可采用离子选择性电极进行电位法实验。
研究与应用
3.1.1 探头
SECM的分辨率主要取决于所选用的探头大小、形状和类型有光。最常用的探头是外部包着绝缘玻璃的萎靡圆盘电极,有时根据实验需要还选用纳米电极、圆锥形及球形电极。
3.1.2 用作SECM探头要求
(1)电极的导电部分应在电极的最下端;
(2)对圆盘电极来说,RG≤10(RG=b/a,b探头绝缘层半径和电极半径之和,a探头半径)。
一般来说,探头的半径越小,SECM的分辨率越高,越适于研究快速反应动力学。
3.1.3 SECM探头制备
制作时把清洗过得微电极丝放入除氧毛细玻璃管内,两端加热封口,然后打磨至电极部分露出,由粗到细用抛光布依次抛光至探针尖端为平面。也少量涉及到半球面电极。为锥形的电极尖端因探针电流不随d而变化,故很少使用。再小心地把绝缘层打磨成锥形,以在试验中获得尽可能小的探针-基底间距(d)[4]。
3.1.4 探头的质量
SECM的分辨率主要取决于探头的尺寸、形状及探头-基底间距(d)。能够做出小而平的超微圆盘电极是提高分辨率的关键所在,且足够小的d与a能够较快获得探头稳态电流。同时要求绝缘层要薄,减少探头周围的归一化屏蔽层尺寸RG(RG=r/a,r为探头尖端半径)值,以获得更大的探头电流响应尽可能保持探头断面与基底的平行,以正确反映基底形貌信息。
3.2 SECM的应用
随着SECM技术的进一步成熟,SECM在生物分析、均相化学反应动力学研究、异相电荷转移反应研究、样品表面扫描、液/液界面研究和薄膜表征等方面有很广泛的应用。
3.2.1 在生物分析中的应用
主要包括DNA的测定、活细胞中酶的测定及抗原的测定。最早的是1999年,Bard小组用信号灵敏度小于0.05pA的SECM/STM仪,把未绝缘的纳米电极插入置于潮湿空气的云母片表面的超薄液层里,进行涂形扫描,得到了包括酶、DNA、抗原在内的生物大分子的图像,其分辨率可达几个纳米。这是
文档评论(0)