LDE融合光谱回归分类的光照变化人脸识别.pdfVIP

LDE融合光谱回归分类的光照变化人脸识别.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
LDE融合光谱回归分类的光照变化人脸识别.pdf

154 2014 ,50(11) Computer Engineering and Applications 计算机工程与应用 LDE 融合光谱回归分类的光照变化人脸识别 1 2 周柏清 ,任勇军 1 2 ZHOU Baiqing , REN Yongjun 1.湖州职业技术学院 信息工程分院,浙江 湖州 313000 2.南京信息工程大学 计算机与软件学院,南京 210044 1.Faculty of Information Technology, Huzhou Vocational Technical College, Huzhou, Zhejiang 313000, China 2.School of Computer Software, Nanjing University of Information Science Technology, Nanjing 210044, China ZHOU Baiqing, REN Yongjun. Fusion of spectral regression classification with LDE for face recognition with illu- mination variation. Computer Engineering and Applications, 2014, 50 (11):154-158. Abstract :The performance of face recognition with illumination variation is impacted seriously by using traditional spec- tral regression algorithms to extract features, so an algorithm of spectral regression classification optimized by local dis- criminative embedding is proposed. Feature vectors of training samples are calculated. Local discriminative embedding is used to construct embedding needed by classification and embeddings needed by sub-manifold of each classification is learned based on neighbor and classification relationship. Spectral regression classification algorithm is used to compute project metrics, nearest neighbor classifier is used to finish face recognition. The effectiveness and robustness of proposed algorithm has been verified by experiments on the two common face databases extended YaleB and CMU PIE. Experimental results show that proposed algorithm has higher recognition accuracy, better operating characteristic and simpler calculate complexity clearly than several other spectral regression algorithms. Key words :illumination variation; face recognition; local discriminant embedding; spectral regression classification; nearest neighbor classifier 摘 要:针对光照变化人脸识别问题中传统的光谱回归算法不能很好地进行特征提取而严重影响识别性能的问题, 提出了局部判别嵌入优化光谱回归分类的人脸识别算法。计算出训练样本的特征向量;借助于数据

文档评论(0)

整理王 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档