神经网络与matlab仿真.docVIP

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
神经网络与matlab仿真,matlab网络仿真,matlab无线网络仿真,matlab网络协议仿真,matlab网络通信仿真,matlab神经网络与应用,matlab与神经网络,bp神经网络matlab实例,matlab神经网络,matlab神经网络工具箱

神经网络与matlab仿真 摘要 随着技术的发展,人工神经网络在各个方面应用越来越广泛,由于matlab仿真技术对神经网络的建模起着十分重要的作用,因此,本文通过讨论神经网络中基础的一类——线性神经网络的matlab仿真,对神经网络的matlab仿真做一个基本的了解和学习。 关键词:人工神经网路 matlab仿真 线性神经网络 1 神经网络的发展及应用 人工神经网络(Artificial Neural Network,简称ANN)是一种高度并行的信息处理系统,它具有高度的容错性,自组织能力和自学习能力;它以神经科学的研究成果为基础,反映了人脑功能的若干基本特性,对传统的计算机结构和人工智能方法是一个有力的挑战,其目的在于探索人脑加工、储存和有哪些信誉好的足球投注网站信息的机制,进而应用于人工智能系统。 1.1 神经网络的研究历史及发展现状 神经网络的研究已有较长的历史。1943年,心理学家McCulloch和数学家Pitts合作提出形式(兴奋与抑制型)神经元的数学模型(MP模型),开创了神经科学理论研究的时代。1944年,Hebb提出了神经元连接强度的修改规则,它们至今仍在各种神经网络模型中起着重要作用。50年代末60年代初,开始了作为人工智能的网络系统的研究。1958年,F.Rosenblatt首次引进了模拟人脑感知和学习能力的感知器概念,它由阈值性神经元组成。1962年,B.Widrow提出的自适应线性元件(adaline),具有自适应学习功能,在信息处理、模式识别等方面受到重视和应用。在这期间,神经网络大都是单层线性网络。此时,人们对如何解决非线性分割问题很快有了明确的认识,但此时,计算机科学已被人工智能研究热潮所笼罩。80年代后,传统的数字计算机在模拟视听觉的人工智能方面遇到了物理上不能逾越的基线,此时,物理学家Hopfield提出了HNN模型,引入了能量函数的概念,给出了网络稳定性的判据,同时开拓了神经网络用于联想记忆和优化计算的新途径。神经网络的热潮再次掀起。此后,Feldmann和Ballard的连接网络模型指出了传统的人工智能“计算”与生物的“计算”的不同点,给出了并行分布的计算原则;Hinton和Sejnowski提出的Boltzman机模型则急用了统计物理学的概念和方法,首次采用了多层网络的学习算法,保证整个系统趋于全局稳定点;Rumelhart和McClelland等人发展了多层网络的BP算法;Kosko提出了双向联想记忆网络;Hecht-Nielsen提出了另一种反向传播网络,可用于图像压缩和统计分析;Holland提出了分类系统类似于以规则为基础的专家系统。这些努力为神经网络的后期发展奠定了牢固的基础。 目前,神经网络在研究方向上已经形成多个流派,包括多层网络BP算法,Hopfield网络模型,自适应共振理论(ART),自组织特征映射理论等。1987年,IEEE在San Diego召开大规模的神经网络国际学术会议,国际神经网络学会也随之诞生。 迄今为止的神经网络研究。大体可分为三个大的方向: 1)探求人脑神经系统的生物结构和机制; 2)用微电子学或光学器件形成特殊功能网络,主要应用于新一代计算机制造; 3)讲神经网络理论作为解决某些问题的一种手段和方法。 1.2 神经网络的应用 在理论工作取得重要进展的同时,硬件实现的研究工作也在积极开展,神经网络理论已经渗透到各个领域,并在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、传感器技术与机器人、生物医学工程等方面取得了很大的进展。 人工神经网络系统是仿照人脑的工作原理而产生。它是大量的、同时也是很简单的处理单元(神经元)广泛互连形成的复杂的非线性系统。在人工神经网络中存在着许多简单的、具有非线性函数功能的几类单元,它们称为人工神经元。神经元以分层的形式来组织,而它们之间又存在着用突触维持的高度互连。人工神经网络的学习能力就在于突触的权值能够在学习过程中得到加强或是削弱,并以此将信息储存于神经网络中。人工神经网络经过训练,能够实现输入到输出的映射关系,同时具有一定的推广性,因此在不同的领域得到广泛的应用,如自动控制、移动通信、生物医学、模式识别、生产制造等等。 2 面向matlab工具箱的神经网络设计 人工神经网络可通过硬件或软件方式来实现。硬件方式即神经计算机。目前较常用的还是软件实现方式。已有许多公司和研究单位设计了通用的ANN程序以方便人们使用,matlab提供的神经网络工具箱就是其重要代表。 神经网络工具箱是在matlab环境下所开发出来的许多工具箱之一,它是以人工神经网络理论为基础,用matlab语言构造出典型神经网络的激活函数,如S型、线性、竞争层、饱和线性等激活函

文档评论(0)

docinpfd + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5212202040000002

1亿VIP精品文档

相关文档