- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
LBSC 796INFM 718R Week 12Question Answering.ppt
LBSC 796/INFM 718R: Week 12Question Answering Jimmy Lin College of Information Studies University of Maryland Monday, April 24, 2006 The Information Retrieval Cycle Question Answering Information Seeking Behavior Potentially difficult or time-consuming steps of the information seeking process: Query formulation Query refinement Document examination and selection What if a system can directly satisfy information needs phrased in natural language? Question asking is intuitive for humans Compromised query = formalized query When is QA a good idea? Question asking is effective when… The user knows exactly what he or she wants The desired information is short, fact-based, and (generally) context-free Question asking is less effective when… The information need is vague or broad The information request is exploratory in nature Contrasting Information Needs Ad hoc retrieval: find me documents “like this” Question answering From this… To this… Why is this better than Google? Keywords cannot capture semantic constraints between query terms: Document retrieval systems cannot fuse together information from multiple documents Who would benefit? Sample target users of a QA system Question answering fills an important niche in the broader information seeking environment Roots of Question Answering Information Retrieval (IR) Information Extraction (IE) Information Retrieval (IR) Can substitute “document” for “information” IR systems Use statistical methods Rely on frequency of words in query, document, collection Retrieve complete documents Return ranked lists of “hits” based on relevance Limitations Answers questions indirectly Does not attempt to understand the “meaning” of user’s query or documents in the collection Information Extraction (IE) IE systems Identify documents of a specific type Extract information according to pre-defined templates Place the information into frame-like database records Templates = pre-defined questions Extracted infor
您可能关注的文档
- Conference Themes.ppt
- Cours de français 1法语教程.ppt
- Cryptography and Network SecurityChapter 12.ppt
- CSCC 12 Days of Christmas.ppt
- CSE115ENGR160 Discrete Mathematics042612.ppt
- CSE115ENGR160 Discrete Mathematics050112.ppt
- Current Seafood Quality and Safety Concerns.ppt
- CYTOKINES AND RECEPTORSChapter 12.ppt
- D7_6空间曲线.ppt-第七章.ppt
- Dalian, Your Ideal Destination For IT Outsourcing.ppt
- Lecture 12 Crystallography.ppt
- Lecture 12 Joint Hypothesis Tests.ppt
- Lecture 12 Real Estate.ppt
- Lecture 12 Sorting.ppt
- Lecture 12 Unit Review.ppt
- Lecture 12Electromyography.ppt
- Lecture 12Light Reflection and Refraction.ppt
- Lecture 12Review and Sample Exam Questions.PPT
- LED广告射灯和太阳能光伏发电设备营销方案.ppt
- LEGISLATIVE LOGISTICSJune 12, 2007.ppt
文档评论(0)