- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
图像处理中的独立和主体部分分析.pdf
PRINCIPAL AND INDEPENDENT COMPONENT
ANALYSIS IN IMAGE PROCESSING
S.Vaseghi 1, H.Jetelova 1,2
1 Brunel University, Department of Electronics and Computer Engineering
2 Institute of Chemical Technology, Department of Computing and Control Engineering
Abstract
This paper is devoted to practical utilization of Principal Component Analysis
(PCA) and its extension Independent Component Analysis (ICA). Our inten-
sion is to demonstrate different applications of the above mentioned methods in
biomedical image and signal processing. The concept of ICA in terms of blind
source separation is illustrated on EEG signals, whereas the approach of sparse
coding is explained using fMRI images.
1 Introduction
Both Principal (PCA) and Independent Component analysis (ICA) are transformations that
rely on statistics of the given data set. PCA is based on the information given by the second
order statistics, whereas ICA goes up to high order statistics. Therefore the result obtained by
ICA is assumed to be more meaningful than the one gained by PCA. However ICA better works
on the data that have been already preprocessed by PCA. Thus ICA is often perceived as an
extension of PCA. PCA and especially ICA have recently become popular tools in various fields,
e.g. blind source separation, feature extraction, telecommunication, finance, text document
analysis, seismic monitoring and many others. Two different approaches applied on EEG signals
and images will be considered in this paper. All successive ICA experiments were designed in
MATLAB environment using FastICA package proposed by Aapo Hyv¨arinen et al.
2 Principle of Independent Component Analysis
For better
文档评论(0)