基于小波变换的边缘检测技术(完整).docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第一章 图像边缘的定义 引 言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子 Prewitt算子 Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子 和Mallat算子等。 §1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义§2.1传统的边缘检测算子图像的梯度,中包含局部灰度的变化信息。 记: 为梯度的幅度,可以用做边缘检测算子。 常用的边缘检测方法有:差分边缘检测,Roberts边缘检测算子,Sobel边缘检测算子,Prewitt边缘检测算子,Robinson边缘检测算子,Lapalce边缘检测算子等等。 §2.2 差分边缘检测方法 利用像素灰度的一阶导数算子在灰度迅速变化处得到高值来进行奇异点的检测。它在某一点的值就代表该点的“边缘强度”,可以通过对这些值设置阈值来进一步得到边缘图像。但用差分边缘检测必须使差分的方向与边缘方向垂直,这就需要对图像的不同方向都进行差分运算,增加了实际运算的繁琐性。一般为垂直边缘、水平边缘、对角线边缘检测: 图2-1 差分算法检测边缘的方向模板 §2.3 Roberts边缘检测算子 Roberts边缘检测算子根据任意一对互相垂直方向上的差分可以用来计算梯度的原理,采用对角线方向相邻两像素之差,即: 他们的卷积算子为: 有了,之后,很容易计算出Roberts的梯度幅值,适当的取门限TH,作如下判断:,为阶跃边缘点。为边缘图像。 Roberts算子采用对角线方向相邻两像素之差近似梯度幅值边缘检测。检测水平和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感。 图2-2:用Roberts算子进行边缘检测的Lena图与原图像 §2.4 Sobel边缘检测算子 对数字图像的每一个像素,考察它上,下,左,右邻点灰度的加权差,与之接近的邻点的权大。据此,定义Sobel算子如下: 卷积算子为: 图2-3: Sobel边缘检测算子方向模板 适当的取门限TH,作如下判断:为阶跃边缘点,为边缘图像。 Sobel算子很容易在空间上实现,Sobel边缘检测器不但产生较好的边缘检测效果,而且受噪声的影响也比较小。当使用大的领域时,抗噪声特性会更好,但这样做会增加计算量,并得出的边缘也比较粗。 Sobel算子利用像素点上下,左右邻点的灰度加权算法,根据在边缘点出达到极值这一现象进行边缘的检测。Sobel算子对噪声具有平滑作用,提供较为精确的边缘方向信息,但它

文档评论(0)

企管文库 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档