- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
关联规则挖掘技术在零售业中的应用
【摘要】?数据挖掘技术是近年来数据库和人工智能领域研究的热点课题,它引起了科学界和产业界的广泛关注。作为一门交叉性学科,它涉及到机器学习、模式识别、归纳推理、统计学、数据库、数据可视化、高性能计算等多个领域。关联规则是数据挖掘研究中的一个重要的研究内容,它是完成数据挖掘任务的一个重要手段。在零售业,数据挖掘可有助于识别顾客购买行为,发现顾客购买模式和趋势,改进服务质量,取得更
好的顾客保持力和满意程度,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。
【关键词】 关联规则 数据挖掘 Apriori 算法
一:关联规则的含义:
设I={i1, i2,…, im}是项的集合,其中的元素称为项(item)。记D为事务(transaction)T的集合,这里事务T是项的集合,并且T(I 。对应每一个事务有唯一的标识,如事务号,记作TID。设X是一个I中项的集合,如果X(T,那么称事务T包含X。
一个关联规则是形如X(Y的蕴涵式,这里X(I, Y(I,并且X(Y=(。规则X(Y在事务数据库D中的支持度(support)是事务集中包含X和Y的事务数与所有事务数之比,记为support(X(Y),即
support(X(Y)= P(X ( Y)
规则X(Y在事务集中的可信度(confidence)是指包含X和Y的事务数与包含X的交易数之比,记为confidence(X(Y),即
confidence(X(Y)= P(X|Y)
给定一个事务集D,挖掘关联规则问题就是寻找支持度和可信度分别大于用户给定的最小支持度(minsupp)和最小可信度(minconf)的关联规则。
二:关联规则的分类:
按照不同情况,关联规则可以进行分类如下:
1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。
布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=职业=“秘书” ,是布尔型关联规则;性别=“女”=avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。
2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。
在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=Sony打印机,是一个细节数据上的单层关联规则;台式机=Sony打印机,是一个较高层次和细节层次之间的多层关联规则。
3.基于规则中涉及到的数据的维数,关联规则可以分为单维关联规则和多维关联规则。
在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=尿布,这条规则只涉及到用户的购买的物品;性别=“女”=职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。
三:关联规则的相关算法:
1.Apriori算法:使用候选项集找频繁项集
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
Apriori算法可以产生相对较小的候选项目集,扫描数据库的次数由最大频繁项目集的项目数决定。因此,该算法适合于最大频繁项目集相对较小的数据集中的关联规则挖掘问题。
Apriori算法的两大缺点:1.可能产生大量的候选集;2.可能需要重复扫描数据库。
2.FP-growth算法
针对Apriori算法的固有缺陷, FP-growth算法是一种不产生候选挖掘频繁项集的方法,弥补了Apriori算法中的固有缺陷,是大型数据库挖掘频繁项集的一个有效的算法。FP-g
文档评论(0)