广义泊松整值GARCH模型.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
广义泊松整值 GARCH 模型 朱复康 吉林大学数学学院,长春 130012 摘要:本文介绍了一个广义泊松整值 GARCH 模型,它既能处理偏大离差,也能处理偏小离 差。与已有的 double Poisson 整值 GARCH 模型相比,新模型的存在性和遍历性容易给出。 导出了自相关结构以及 1 阶和 2 阶矩的表达式,给出了参数的最大似然估计量及其渐近性质。 关键词:渐近性;广义泊松;整值 GARCH 模型 中图分类号: o212.1 Generalized Poisson integer-valued GARCH models ZHU Fukang School of Mathematics, Jilin University, Changchun 130012 Abstract: In this paper we introduce a generalized Poisson INGARCH model, which can account for both overdispersion and underdispersion. Compared with the double Poisson INGARCH model, conditions for the existence and ergodicity of such a process are easily given. We analyze the autocorrelation structure and also derive expressions for moments of order 1 and 2. We consider the maximum likelihood estimators for the parameters and establish their consistency and asymptotic normality. Key words: Asymptotics; Generalized Poisson; Integer-valued GARCH models 0 Introduction Time series of counts are commonly observed in real-world applications, so a number of time series models for counts have been proposed, which are able to describe di?erent types of marginal distribution and autocorrelation structure. The Poisson distribution provides a standard framework for the analysis of count data, but the requirement that the variance should equal the mean is often too restrictive in practice. Frequently data are overdispersed, with the variance greater than the mean, and there are many alternative distributions that can be used to model the data. The opposite phenomenon of underdispersion, where the variance is less than the mean, occurs less frequently and the choice 基金项目: National Natural Science Foundation of China , Specialized Research Fund for the Doctoral Program of Higher Education (20090061120037) 作者简介: ZHU Fukang(1980-),male,associate professor,major research direction:time series. -1- of distributions is much narrower. However, there are situations in which underdispersion is well documented, see Ridout and Besbeas (2004) an

文档评论(0)

文档分享 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档