- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
改进的粒子群算法求解置换流水车间调度问题 摘要:针对置换流水车间调度问题,提出了一种改进的粒子群算法进行求解。改进算法引入了判断粒子群早熟的方法,并在发现粒子群早熟后采用逆转策略对种群最优粒子进行变异,利用模拟退火思想概率接收新的最优粒子。种群最优粒子的改变会引导粒子群跳出局部极值的约束,从而克服粒子群的早熟状态。通过对置换流水车间调度问题中car系列和rec系列部分基准数据的测试,证明了该算法的有效性。 关键词:粒子群算法;多样性;局部收敛;置换流水车间调度 improved particle swarm optimization for permutation flowshop scheduling problem zhang qi.liang1,2*,chen yong.sheng1,han bin2 1. college of electronic and information engineering,tongji university, shanghai 200331,china; 2. college of electricity and information engineering, jiangsu university of science and technology, zhangjiagang jiangsu 215600, china abstract: to solve permutation flowshop scheduling problem, an improved particle swarm optimization was proposed. improved algorithm introduced a method to judge the prematurity state of the particle swarm, and used reversion strategy to mutate the best particle after the particle swarm being trapped in premature convergence, simulated annealing method was used to accept the new particle.the mutation for best particle can guide the particle swarm to escape from the local best value’s limit and overcome the particles’ premature stagnation.the simulation results based on car and rec’benchmarks of permutation flowshop scheduling problem proved the effectiveness of the proposed algorithm. to solve permutation flowshop scheduling problem, an improved particle swarm optimization was proposed. improved algorithm introduced a method to judge the premature state of the particle swarm, and used reversion strategy to mutate the best particle after the particle swarm being trapped in premature convergence, and used simulated annealing method to accept the new particle. the mutation for best particle can guide the particle swarm to escape from the local best values limit and overcome the particles premature stagnation. the simulation results based on car and rec benchmarks of permutation flowshop scheduling problem prove the effectiveness of the proposed algorithm.key words: particle sw
文档评论(0)