- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
SPSS第讲非参数检验;但许多调查或实验所得的科研数据,其总体分布未知或无法确定。因为有的数据不是来自所假定分布的总体,或者数据根本不是来自一个总体,还有可能数据因为某种原因被严重污染,这样在假定分布的情况下进行推断的做法就有可能产生错误的结论。此时人们希望检验对一个总体分布形状不必作限制。;这种不是针对总体参数,而是针对总体的某些一般性假设(如总体分布)的统计分析方法称非参数检验(NonparametricTests)。
非参数检验对数据分布没有要求,适于参数检验的数据都可以用非参数检验的方法进行检验,有研究表明,非参数检验的统计效能大约为参数检验的95%,这是一个能够接受的水平。
非参数检验根据样本数目以及样本之间的关系可以分为单样本非参数检验、两独立样本非参数检验、多独立样本非参数检验、两配对样本非参数检验和多配对样本非参数检验几种。;统计学上的定义和计算公式;单样本K-S检验可以将一个变量的实际频数分布与正态分布(Normal)、均匀分布(Uniform)、泊松分布(Poisson)、指数(Exponential)分布进行比较。其零假设H0为样本来自的总体与指定的理论分布无显著差异。;6.2两配对样本非参数检验;两配对样本非参数检验一般用于同一研究对象(或两配对对象)分别给予两种不同处理的效果比较,以及同一研究对象(或两配对对象)处理前后的效果比较。前者推断两种效果有无差别,后者推断某种处理是否有效。;两配对样本非参数检验的前提要求两个样本应是配对的。在应用领域中,主要的配对资料包括:具有年龄、性别、体重、病况等非处理因素相同或相似者。首先两个样本的观察数目相同,其次两样本的观察值顺序不能随意改变。;SPSS中有以下3种两配对样本非参数检验方法。;1.两配对样本的McNemar变化显著性检验;McNemar变化显著性检验基本方法采用二项分布检验。它通过对两组样本前后变化的频率,计算二项分布的概率值。;2.两配对样本的符号(Sign)检验;两配对样本的符号检验利用正、负符号的个数多少来进行检验。首先,将第二组样本的各个观察值减去第一组样本对应的观察值,如果得到差值是一个正数,则记为正号;差值为负数,则记为负号。然后计算正号的个数和负号的个数。;通过比较正号的个数和负号的个数,可以判断两组样本的分布。例如,正号的个数和负号的个数大致相当,则可以认为两配对样本数据分布差距较小;正号的个数和负号的个数相差较多,可以分为两配对样本数据分布差距较大。;SPSS将自动对差值正负符合序列作单样本二项分布检验,计算出实际的概率值。如果得到的概率值小于或等于用户的显著性水平?,则应拒绝零假设H0,认为两配对样本来自的总体分布有显著差异;如果概率值大于显著性水平,则不能拒绝零假设H0,认为两配对样本来自的总体分布无显著差异。;3.两配对样本的Wilcoxon符号平均秩检验;两配对样本的Wilcoxon符号平均秩检验首先按照符号检验的方法,将第二组样本的各个观察值减去第一组样本对应的观察值,如果得到差值是一个正数,则记为正号;差值为负数,则记为负号。同时保存差值的绝对值数据。然后将绝对差值数据按升序排序,并求出相应的秩,最后分别计算正号秩总合W?+、负号秩总合W??以及正号平均秩和负号平均秩。;如果正号平均秩和负号平均秩大致相当,则可以认为两配对样本数据正负变化程度基本相当,分布差距较小。;两配对样本的Wilcoxon符号平均秩检验按照下面的公式计算Z统计量,它近似服从正态分布;研究问题
MydataA.sav分析历史、数学、外语成绩之间是否存在显著性差异。
;实现步骤
1、正态性检验
分析——非参数检验——旧对话框——1样本K-S
2、分析——非参数检验——旧对话框——2个相关样本;6.2.3结果和讨论;(2)符号检验结果如下两表所示。;(3)McNemar检验结果如下两表所示。;(4)MarginalHomo检验结果如下两表所示。;6.3多配对样本非参数检验;1.多配对样本的Friedman检验;多配对样本的Friendman检验的实现原理是:首先以样本为单位,将各个样本数据按照升序排列,求得各个样本数据在各自行中的秩,然后计算各样本的秩总和及平均秩。;如果多个配对样本的分布存在显著的差异,那么数值普遍偏大的组秩和必然偏大,数值普遍偏小的组,秩和也必然偏小,各组的秩之间就会存在显著差异。如果各样本的平均秩大致相当,那么可以认为各组的总体分布没有显著差异。;2.多配对样本的Kendall协同系数检验;Kendall协同系数检验中会计算Friedman检验方法,得到fr
文档评论(0)