硅石墨烯复合负极材料体积膨胀及SEI膜的原因机理及解决方法.docVIP

硅石墨烯复合负极材料体积膨胀及SEI膜的原因机理及解决方法.doc

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

硅/石墨烯复合负极材料

1、硅体积膨胀的原因及反应机理

迄今为止,负极材料中硅的理论容量最高,Li和Si形成合金LixSi(0x≤4.4);很多学者认为在常温下,硅负极与锂合金化产生的富锂产物主要是Li3.75Si相,容量高达3572mAh/g,远大于石墨的理论容量,但伴随着巨大的体积变化,其体积膨胀高达280%,硅的粉化致使电极结构失稳而失效,导致电极结构的崩塌和活性材料剥落而使电极失去电接触,电极的容量随之大幅度下降甚至完全失效[1]。

图1.1Li―Si合金相图和容量对应图[2]

图1.1为Limthongkul等人[2]根据热力学计算出的锂硅合金相图,从图中可以看出硅中插入的Li+越多,会依次形成Li12Si7、Li7Si3、Li13Si4、Li22Si5等合金相。这些合金相吉布斯自由能小,为稳定态相,理论上硅电极中嵌入的锂越多,所对应的容量就越大。但是实际上在锂离子电池中,当硅颗粒作为负极时,锂嵌入硅后会首先生成无定形的亚稳态合金LixSi。Limthongkul解释为Si中的相变情况不应该从热力学角度去分析,而是应该从电子和离子的动力学来分析,该文献称Li与Si反应生成无定形态的亚稳态合金的过程为电化学驱动的固相非晶化过程(electrochemically-drivensolid-stateamorphization)。晶相的硅锂合金还有其它的化合物包括LiSi、Li21Si5、Li15Si4等,常见的几种硅锂合金的晶格结构如表1.1。

表1.1锂硅合金的晶体结构

LiSi

Li12Si7

Li7Si3

Li13Si4

Li15Si4

Li21Si5

Li22Si5

四方晶系

正交晶系

菱方晶系

正交晶系

体心立方

面心立方

面心立方

对于常温下锂与晶体硅的电化学合金化机理,Obrvac[3]等人对近几年的相关研究成果进行了总结,如图1.2和1.3所述。

图1.2晶体硅颗粒作为负极时的前两次的电化学性能曲线(a)硅电极电压-容量曲线(b)硅电极C-V曲线[3]

图1.3硅电极与锂反应过程的示意图[3]

2)分散骨架,阻止SiNP团聚;3)内部空隙可以容纳硅嵌锂过程中的体积膨胀,缓解甚至消除体积效应导致的粉化;4)微米级的球形颗粒具有良好的工艺性,易于制成均匀的电极浆料。虽然在一定程度上取得了成功,但所用原料较贵,工艺成本较高。

对于一维的硅纳米线,Y.Cui[10]等人采用化学气相沉积法在不锈钢基体上沉积生成垂直于基体的硅纳米线,发现首次比容量高达4277mAh/g,跟硅的理论比容量一致,并且循环10次后依旧保持3500mAh/g的充电容量。这种特殊结构具有如下三种优点:1)硅纳米线不会由于充放电过程中的巨大体积变化而粉化;2)硅纳米线之间的孔隙可以容纳硅纳米线嵌锂过程中的直径膨胀,而不会导致硅纳米线从集流体上脱落;3)每根硅纳米线都直接连接到集流体上,保证每根硅纳米线都能充分发挥其嵌锂容量,且由于每根硅纳米线均长在不锈钢集流体上,接触电阻小,同时也无需粘结剂和导电剂,使得活性物质的占比得以提高。但是该方法工艺成本较高,精密程度难以控制。

对于二维硅纳米薄膜,可以通过离子溅射[11-13]或真空沉淀[14-15]等技术制备薄膜。在这两种情况下,薄膜电极是不需要粘结剂的,能够牢固地附着在铜集流体上,即不存在降低容量的客体,显示出较高的比容量和非常好的循环性能。尽管硅薄膜电极具有如此良好的特性,但尚未得到商业化。

鉴于低维纳米硅负极材料固有缺点,J.Cho[16]等人进一步开发出三维多孔硅负极材料,其合成方法是采用萘钠溶剂热还原SiCl4,并将得到的凝胶与SiO2颗粒混合,然后在900℃下煅烧,最后用氢氟酸除去SiO2层后得到多孔硅,循环100次后其容量仍然保持2800mAh/g,显示出非常好的循环稳定性和高容量特性。多孔硅具有如下三个方面的优点:1)多孔硅是微米量级,无强烈团聚趋势,易于制成分散良好的电极浆料;2)多孔硅的孔壁只有几十纳米厚,有利于缩短锂离子在硅基体中的扩散路径,极大地提高硅基负极材料的倍率性能;3)多孔硅中含有大量空隙,可以容纳硅嵌锂过程中的体积膨胀,并为电解液中的锂离子提供快速传输通道。总体而言,多孔硅复合负极材料的制备工艺复杂,成本高,需要大量的研究来降低成本。

硅的复合化也是改善体积膨胀的有效手段之一。目前对硅基负极材料的复合主要分为硅与金属材料的复合和硅与非金属材料的复合两大类。

硅合金是用体积效应较小硅合金替代纯硅用作负极材料,在牺牲一定容量的基础上,获得较好的循环性能。硅与金属的复合存在两种情况[17]:一是金属(如Ni、Ti)在整个充放电过程中不具有嵌脱锂活性,纯粹起支撑结构作用;二是金属(如金属Al、Sn、Mg)本生具有嵌脱锂活性,但与

文档评论(0)

182****6616 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档