基于计算机视觉的构件表面缺陷特征提取.docxVIP

基于计算机视觉的构件表面缺陷特征提取.docx

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

表面缺陷检测以及特征提取,所涉及的范围是非常广泛的,包括了铁轨表面缺陷!带钢表面缺陷以及织物表面缺陷等因此加强对产品的表面缺陷提取以及质量检测显得尤为重要,目前基于计算机视觉的构件缺陷检测系统已经受到国内外研究人员的重视,如何更好地将计算机视觉技术引人到产品表面质量缺陷检测中去是未来发展的重点。笔者将在下文中就此展开详细的阐述。

1.计算机视觉的基本工作原理

1.1系统结构

计算机视觉是一项涉及范围广泛的技术,他通过图像采集装置将检测目标转化为图像信号,再经过专门性的额图像处理系统最终生成具体的表面特征。具体来讲在图像处理环节米旭涛根据图像的具体像素以及图像分布和颜色、亮度、饱和度等进行目标提取,再比照系统预设的参照值得出最终的检测结果,例如尺寸大小、颜色等是否合格。计算机视觉处理系统包括了光源!镜头!计算机以及图像采集装置和处理系统等,这些系统综合组成共同推动了计算机视觉系统的正常稳定运行。

1.2计算机视觉硬件设计

计算机视觉系统的硬件平台包括了照明系统!镜头相机以及图像采集装置和工控机四个部分,这四个部分缺一不可,共同组成了整个计算机视觉系统。

1.2.1照明系统

照明系统是整个计算机视觉系统的关键,尤其是在光源和照明方案的配合上更是直接影响了整个系统运行的成败因此在照明方案的制定以及光源的选择上应该尽可能的突出物体特征参量,综合考虑对比度以及亮度等因素,将计算机视觉系统的光源与照明方案相匹配,

选择需要的几何形状以及均匀度等,同时还需要结合被检测物体的表面特征几何形状针对构件表面缺陷的照明方案,笔者认为应该选择功率相对较大的LED光源,用低角度的方式进行照明。

1.2.2相机镜头

相机系统是成像的关键,因此在相机镜头的选择上应该适用于具体的构件一般来说相机镜头包括了两方面内容,一是线扫,二是面扫。通过二者的综合运用实现更好地成像效果

1.2.3图像采集卡

图像采集卡主要是指在计算机视觉系统中位于图像裁剪机设备和图像处理设备之间的重要接口是成像的中间环节,发挥着不可或缺的作用。

2.基于计算机视觉的构件表面缺陷特征提取

基于计算机视觉的构件表面缺陷特征提取可以分为为三个重要部分,分别是图像预处理部分:主要是指针对构件进行区域的定位,将非构件的部分移出计算机视觉的缺陷提取技术中去,从而降低了后续工作的工作难度;其次是进行缺陷定位,主要是指通过特定的技术和算法将缺陷从结果当中直接分离出来第三部分是缺陷特征的提取,也是系统处理的结果部分,是通过计算缺陷的程度以及缺陷大小,从而为后期的构件维护提供参考依据具体来说,这二个部分的操作主要体现在以下儿个方面:

2.1区域定位

区域定位是减少构件处理和选择时间的关键,能够大大提高构件缺陷提取的效率构件的表面的基木特征和大致集合框架提取是区域定位和的第一步,要将计算机区域定位和缺陷提取结合起来,更好地实现缺陷分析L要做好构件的区域定位首先需要明确构件的基本种类

和特征:一是根据构件的重川方式来说,可以分为白匣子!灰匣子!黑件的粒度的大小可以分为小中大汽种不同粒度的构件;再次是从构件的功能上来看可以分为系统构件!支撑构件以及领域构件二个部分四是从构件的基本结构特征来看可以分为原子构件以及组合构件最后从构件的状态来说,又可以分为动态和静态构件因此从不同种类的构件进行区域定位为视觉系统正常运行创造厂优良的条件。

2.2缺陷提取

在进行缺陷提取的过程中,难免会受到客观的环境影响,比如噪声!温度以及湿度等对图像处理的结果产生影响!因此需要对区域定位中产生的区域进行滤波处理,然后再采用阂值分割的办法进行缺陷提取具体操作步骤如下所示:

(l)计算出成像中的最小最大灰度值,并且设置初始阂值

(2)根据闭值,结合图像的分割日标,将图像分俐成为日标和背景两个部分,求导出平均灰度。

(3)再根据新的平均灰度值计算出新的阂值

(4)观察阑值的初始值与新阂值之间的关系,如歌二者相等则整个计算过程就结束,如果不相等,则就需要进一步计算通过阂值计算得出啊的最佳闽值分割效果图,能够进行初步的缺陷预判,但是初步预判当中还存在较多的不确定因素,主要包括两类,一是在边缘部分出现的细小毛刺,由于与缺陷的距离较近因此在初步缺陷提取中容易形成误判!再次是在构件表面有一些非常细小的缺陷,这些缺陷的影响较小,不会对构件的性能造成影响,因此在进行缺陷提取的过程中需要将这两个因素排除在外,具体主要是指采用图像形态学中开运算和闭运算,从而达到对构件中的明了细节和暗色细节图像像素点的上下左右灰度加权算法.对构件表面的缺陷进行检测再采用二值图像边界跟踪法,将缺陷从构件图像中分离出来。

2.3缺陷特征提取

缺陷特征提取,又可以称之为缺陷的定量计算和定性过程,是将前期所得的数据结果以更加直观的形式展现出来,通过对比指标参数判断构件的表面质量是否合格

文档评论(0)

外卖人-小何 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档