使用深度强化学习解决高维多期环境下的组合配置研究报告.pdfVIP

使用深度强化学习解决高维多期环境下的组合配置研究报告.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

[Table_StockNameRptType]

金融工程

专题报告

使用深度强化学习解决高维多期环境下的组合配置

——“学海拾珠”系列之二百二十七

报告日期:2025-03-13主要观点:

[Table_RptDate]

[Table_Summary]

本篇是“学海拾珠”系列第二百二十七篇,文献设计了一个先进的

投资组合配置框架,使用卷积神经网络获得资产价格的动态模式,并通

过WaveNet对跨资产依赖性进行建模,结合DRL方法求解多期

Bellman方程,获得最优长期投资组合配置。在不同持有期、风险厌恶

系数、交易成本和不同指数上进行实证测试后,发现该方法较为优越。

回到国内市场,我们也可以应用类似的深度强化学习模型进行组合构

建。

⚫投资者的长期优化问题

传统的投资组合选择方法通常考虑单期收益。Markovitz(1952)开

创了均值-方差优化模型,是投资组合理论的基础。

文献提出一个基于DRL(含CNN和WaveNet)的投资组合框架来

解决高维多周期环境下的优化问题,所设计的投资组合策略框架主要包

括三个组成部分。首先,采用基于卷积神经网络(CNN)的序列信息来

捕捉每种资产价格中的动态模式。其次,使用WaveNet对投资组合中

[Table_CompanyReport]

相关报告资产之间的交叉依赖性进行建模,这在高维环境中尤为重要。最后,将

1.《风险规避型强化学习模型在投资以上两大部分作为DPG模型的输入来优化投资组合配置,将该方法表

组合优化中的应用——“学海拾珠”示为MP-Adv-DRL-Cor。

系列之二百二十六》

2.《贝塔异象的波动性之谜——“学⚫实证结果

海拾珠”系列之二百二十五》投资组合的盈利能力随着投资期限的延长而增加,同时年度波动率

3.《ETF的资产配置与再平衡:样本协也上升。风险厌恶系数λ的增加意味着投资者更倾向于选择保守策略以

方差对比EWMA与GARCH模型—降低投资组合风险。这种偏好导致交易频率和投资活动减少,获得高额

—“学海拾珠”系列之二百二十四》年回报和高夏普比率的可能性受到限制。交易成本的存在主要影响投资

4.《市场对投资者情绪的反应——“学组合的盈利能力,而不会增加风险,它还对投资组合的换手率产生重大

海拾珠”系列之二百二十三》影响。在存在交易成本的情况下,投资者在投资机会随时间变化时调整

5.《基于语境的财务信息解读——“学投资组合权重的动机减少。

海拾珠”系列之二百二十二》通常,MP-Adv-DRL-Cor方法的业绩表现优于其他比较方法。对于

6.《跟踪误差的构成成分、中期交易与持有期h=1,交易成本ξ=0.05%和风险厌恶系数λ=0.1的条件下,

您可能关注的文档

文档评论(0)

anhuixingxing + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档