《机器学习项目案例开发》课件 项目四:使用Scikit-learn库来实现多项式回归.pptx

《机器学习项目案例开发》课件 项目四:使用Scikit-learn库来实现多项式回归.pptx

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

人工智能技术与应用

项目4:使用scikit-learn实现多项式回归;;多项式概述;多项式回归:

一个因变量与一个或多个自变量间多项式的回归分析方法,称为多项式回归,如果自变量只有一个时,称为一元多项式回归,如果有多个自变量时称为多元多项式回归。由于任何函数都可以使用多项式逼近,因此多项式回归有着广泛的应用。;特征增扩;pipeline:

Python中的pipeline和linux中的pipeline类似,把若干个命令连接起来,前一个命令的输出是后一个命令的输入,最终完成一个类似于流水线的功能。

函数:sklearn.pipeline.Pipeline(steps)

参数:steps:一个列表,列表的元素为(name,transform)元组,其中name是学习器的名字,用于输出和日志;transform是学习器,;敬请指导!

文档评论(0)

xiaobao + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档