- 1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。。
- 2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 3、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本方案公开了一种用于识别无砟道床离缝伤损的方法,包括获取待识别图片,对采集的待检测无砟道床图像进行图像预处理;基于ResNet‑PPM图像分割模型识别出所述无砟轨道图像中的离缝区域图像和离缝伤损类型;其中,所述ResNet‑PPM图像分割模型是基于特征图范数的裁剪准则对ResNet网络模型进行剪枝处理获得的。该方法在保证准确率的同时进一步降低分割模型参数量,提高模型算法识别速度,与人工方法对比,大幅提高伤损的检测效率、识别准确度和检测精度,用新技术、新方法来提高无砟道床表观伤损检查的自动化水平。
(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 CN 112862764 A (43)申请公布日 2021.05.28 (21)申请号 202110102457.3 G06T 7/10 (2017.01)
文档评论(0)