《基于BP神经网络的语音识别系统【,绝对精品】》-毕业设计(论文).docVIP

《基于BP神经网络的语音识别系统【,绝对精品】》-毕业设计(论文).doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
洛阳师范学院2012届本科生毕业设计 PAGE II 2 - 摘要 随着计算机技术与人工智能的快速发展与广泛应用,语音识别越来越受到人们的关注和重视。目前常见的语音识别技术主要包括,基于矢量量化(Vector Quantization, VQ)的识别技术、动态时间规整(Dynamic Time Warping, DTW)、隐马尔可夫模型(Hidden Markov Models, HMM)、人工神经网络(Artificial Neural Network, ANN)等等。 本文讨论了语音信号的处理技术,包括语音信号预处理、信号特征提取,分析论述了BP神经网络模型思想。在Matlab 7.0环境实现了语音信号的预加重、分帧加窗、端点检测等基本信号处理过程,提取出线性预测分析系数(Linear Prediction Coding, LPC)、Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient, MFCC)等特征数据。 针对语音识别,设计了三层的BP神经网络,对影响神经网络的关键参数进行了分析和调整。从统计角度上,分析对比了LPC和MFCC特征参数对应的BP神经网络的语音识别性能。 关键词:语音识别;神经网络;特征提取;语音信号处理;非稳定随机信号 Abstract With speedy development and comprehensive application of computer technology and artificial intelligence, people began to focus on speech recognition. Up to now, there have been several speech recognition technologies being familiar by us, including Vector Quantization, Dynamic Time Warping, Hidden Markov Models, Artificial Neural Network, and so on. This paper would go into details about some processing technologies of speech signal, including pre-process of speech signal and feature extraction, would relate and analyze the principle of the model of feedforward neural network based on back-propagation algorithm (BPNN). In Matlab2007 environment, those experiments have implemented some basic operation of signal processing, such as pre-emphasis, enframing, windowing and endpoint checking of speech signal, extracted corresponding Linear Prediction Coding Coefficient (LPC) and Mel Frequency Cepstrum Coefficient (MFCC) from speech’s data, and constructed BP neural network. A endpoint checking algorithm having good performance is given in the paper. In the process, all the parameters are analyzed and setted properly in order to fetch the actual speech segment from the original speech accurately. A three-layer BPNN is designed for speech recognition system; the critical parameters of BPNN is studied. Statistically, it compares LPC’s BPNN with MFCC’s BPNN on the speech recognition ability. In the end, a strategy of redu

文档评论(0)

小米兰 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档