深度学习论文Dueling Network Architectures for Deep Reinforcement Learning.pdf

深度学习论文Dueling Network Architectures for Deep Reinforcement Learning.pdf

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang ZIYU @GOOGLE .COM Tom Schaul SCHAUL @GOOGLE .COM Matteo Hessel MTTHSS @GOOGLE .COM Hado van Hasselt HADO @GOOGLE .COM Marc Lanctot LANCTOT @GOOGLE .COM Nando de Freitas NANDODEFREITAS @GMAIL .COM 6 Google DeepMind, London, UK 1 0 2 r Abstract In spite of this, most of the approaches for RL use standard p neural networks, such as convolutional networks, MLPs, A In recent years there have been many successes LSTMs and autoencoders. The focus in these recent ad- of using deep representations in reinforcement vances has been on designing improved control and RL al- 5 learning. Still, many of these applications use gorithms, or simply on incorporating existing neural net- ] conventional architectures, such as convolutional work architectures into RL methods. Here, we take an al- G networks, LSTMs, or auto-encoders. In this pa- ternative but complementary approach of focusing primar- L per, we present a new neural network architec- ily on innovating a neural network architecture that is better s. ture for model-free reinforcement learning. Our

您可能关注的文档

文档评论(0)

*国之崛起* + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档