《语音信号处理》实验3-LPC特征提取.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
华南理工大学 《语音信号处理》实验报告 实验名称:LPC特征提取 姓名: 学号: 班级:10级电信5班 日期:2013年5 月24日 实验目的 熟练运用MATLAB软件进行语音信号实验; 熟悉短时分析原理、LPC的原理; 学习运用MATLAB编程进行LPC的提取; 学会利用短时分析原理提取LPC特征序列。  2. 实验原理 1、LPC分析基本原理 LPC分析为线性时不变因果稳定系统V(z)建立一个全极点模型,并利用均方误差准则,对已知的语音信号s(n)进行模型参数估计。 如果利用P个取样值来进行预测,则称为P阶线性预测。假设用过去P个取样值的加权之和来预测信号当前取样值,则预测信号为: (1) 其中加权系数用表示,称为预测系数,则预测误差为: (2) 要使预测最佳,则要使短时平均预测误差最小有: (3) (4) 令 (5) 最小的可表示成: (6) 显然,误差越接近于零,线性预测的准确度在均方误差最小的意义上为最佳,由此可以计算出预测系数。 通过LPC分析,由若干帧语音可以得到若干组LPC参数,每组参数形成一个描绘该帧语音特征的矢量,即LPC特征矢量。由LPC特征矢量可以进一步得到很多种派生特征矢量,例如线性预测倒谱系数、线谱对特征、部分相关系数、对数面积比等等。不同的特征矢量具有不同的特点,它们在语音编码和识别领域有着不同的应用价值。 2 、自相关法 在最佳线性预测中,若用下式定义的时间平均最小均方准则代替(3)式的集合平均最小均方准则,即令 (7) 事实上就是短时自相关函数,因而 (8) (9) 根据平稳随机信号的自相关性质,可得 (10) 由(6)式,可得: (11) 综上所述,可以得到如下矩阵形式: (12) 值得注意的是,自相关法在计算预测误差时,数据段的两端都需要加P个零取样值,因而可造成谱估计失真。特别是在短数据段的情况下,这一现实更为严重。另外,当预测系数量化时,有可能造成实际系统的不稳定。 自相关解法主要有杜宾算法、格型算法和舒尔算法等几种高效递推算法。 3、 协方差法 如果在最佳线性预测中,用下式定义的时间平均最小均方准则代替(3)式的集合平均最小均方准则,则可得到类似的方程: (13) 可以看出,这里的数据段两端不需要添加零取样值。在理论上,协方差法计算出来的预测系数有可能造成预测误差滤波器的不稳定,但在实际上当每帧信号取样足够多时,其计算结果将与自相关法的结果很接近,因而稳定性一般是能够保证的 (当然这种方法也有量化效应可能引起不稳定的缺点)。 协方差解法的最大优点在于不存在自相关法中两端出现很大预测误差的情况,在N和P相差不大时,其参数估值比自相关法要精确的多。但是在语音信号处理时,往往取N在200左右。此时,自相关法具有较大误差的段落在整个语音段中所占的比例很小,参数估值也是比较准确的。在这种情况下,协方差法误差较小的优点就不再突出,其缺乏高效递推算法的缺点成为了制约因素。所以,在语音信号处理中往往使用高效的自相关法。 LPC 由于频率响应反映声道的频率响应和被分析信号的谱包络,因此用做反傅里叶变换求出的LPC倒谱系数。 通过线性预测分析得到的合成滤波器的系统函数为,其冲激响应为h

文档评论(0)

Epiphany + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档