- 1、本文档共27页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PAGE
目 录
TOC \o 1-3 \h \z \u 第一章 绪论 h 1
1.1课题的来源与意义 h 1
1.2.噪声对语音信号的影响 h 1
1.3语音信号去噪的发展状况 h 2
1.4去噪效果评价方法 h 2
1.5本文主要内容 h 3
第二章 小波变换原理 h 4
2.1小波基本理论 h 4
2.1.1小波变换的定义 h 4
2.1.2小波变换的时域分辨特性 h 4
2.1.3几种常用的小波 h 5
2.2小波去噪的基本原理 h 7
2.3小波去噪方法 h 7
2.4小波阈值法去噪 h 9
2.4.1小波阈值降噪原理 h 9
2.4.2小波阈值去噪方法 h 10
2.4.3小波阈值选取规则 h 10
2.5小波阈值法去噪仿真实验及结果分析 h 12
第三章 小波包变换去噪 h 19
3.1小波包理论 h 19
3.2小波包分析 h 19
3.3小波包去噪原理 h 20
3.4小波包去噪法仿真实验及结果分析 h 21
结 论 h 25
谢 辞 h 26
参考文献 h 27
PAGE 26
第一章 绪论
1.1课题的来源与意义
随着3G时代的到来, 移动电话正成为人们信赖的得力助手。而移动终端最基本的功能——语音通信则还在受到环境噪声和其他语音的干扰,使通话质量受到制约。所以,语音信号在传输之前尽可能得到净化,对于提高语音通信质量是非常关键的。传统的语音降噪方法大体分为四大类:噪音对消法、谐波增强法、基于语音生成模型的增强法和基于短时谱的增强法。但由于语信号的复杂性和非平稳性, 特别是清音没有明显的时域和频域特征,非常类似于白噪音,这些传统的降噪算法还不尽人意。噪音对消法要求采集到的噪声能够足够“逼真”含噪语音中的噪声,这在实际应用中是非常困难的。谐波增强法必须精确地估计出语音信号的基音周期,这在强噪音干扰下也非易事;基于语音生成模型虽然能够大幅度地提高信噪比,但会使语音信号有不同程度的失真;基于短时谱的增强算法以短时傅立叶变换(STFT)为基础,而STFT从本质上是一种单分辨率的信号分析方法。对非平稳信号,当信号变化剧烈时,。要求有较高的时间分辨率,当信号变化平缓时要求有较高的频率分辨率。由于STFT使用固定窗宽,无法同时兼顾上述两者, 因而也很难获得较好的效果。小波变换属于时频分析方法,它具有多分辨率的特征。即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合探测语音中夹带的瞬态异常变化的信号。并能展示出其成分, 因此被誉为数字显微镜。
小波变换是一种信号的时间-尺度(时间-频率)分析方法,它具有多分辨率分析(Multiresolution Analysis)的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但形状改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以小波变换用于语音信号的去噪是近些年来比较热门的方法[1]。
1.2.噪声对语音信号的影响
在语音通讯中,当发送者处于强噪声的环境下,如:电厂、轻型飞机、装甲车辆、机制车间等地时,就会在接收端接收的语音信号中含有大量的噪声,导致听不清或者听不懂。甚至造成语音通信的中断。当存在噪声干扰时,我们接收到的是噪声和纯净语音混合在一起的信号,相对于纯净语音,含噪语音的统计特性将根据噪声源特性、噪声统计规律、噪声干扰语音的方式、噪声幅度等因素而发生变化。变化的结果使得纯净语音的特征分布原来是高斯的,现在是非高斯的,均值和方差等参数也会发生变化。总之,噪声的影响使得原来纯净语音的模型对于含噪语音来说失效,从而造成识别性能的急剧下降。因此提出了在发送端将混入语音中的噪声消除的必要性。同样,语音降噪技术是语音信号识别系统的重要组成部分,在含噪语音信号中很难提取准确的语音特征参数,大量的研究表明在识别语音信号之前,有必要进行语音降噪。
1.3语音信号去噪的发展状况
语音信号在传输和检测过程中,不同程度地受随机噪声的污染,特别是在小信号采集和测量中,噪声干扰显得尤其严重。因此,如何消除实际语音信号中的噪声, 从混有噪声的信号中提取有用信息一直是现代语音处理学科研究的焦点之一。目前主要用于语音除噪的技术有傅里叶变换、WFT 和小波变换。由于傅里叶变换采用的是恒定窗口技术,因此存在时域和频域局部化的矛盾,不利于语音信号的去噪。WFT把信号划分成许多小的时间间隔,用傅里叶变换分析每一个时间间隔, 以便确
文档评论(0)