Clustering课件.ppt

  1. 1、本文档共35页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Clustering Petter Mostad 精品文档 Clustering vs. class prediction Class prediction: A learning set of objects with known classes Goal: put new objects into existing classes Also called: Supervised learning, or classification Clustering: No learning set, no given classes Goal: discover the ”best” classes or groupings Also called: Unsupervised learning, or class discovery 精品文档 Overview General clustering theory Steps, methods, algorithms, issues... Clustering microarray data Recommendations for this kind of data Programs for clustering Some other visualization techniques 精品文档 Issues in clustering Used to explore and visualize data, with few preconceptions Many subjective choices must be made, so a clustering output tends to be subjective It is difficult to get truly statistically ”significant” conclusions Algorithms will always produce clusters, whether any exist in the data or not 精品文档 Steps in clustering Feature selection and extraction Defining and computing similarities Clustering or grouping objects Assessing, presenting, and using the result 精品文档 1. Feature selection and extraction Deciding which measurements matter for similarity Data reduction Filtering away objects Normalization of measurements 精品文档 The data matrix Every row contains the measurements for one object. Similarities are computed between all pairs of rows If measurements are of same type, one can instead cluster them! measurements objects 精品文档 2. Defining and computing similarities Similarity measures for continuous data vectors: Euclidean distance Minkowski distance (including Manhattan metric) Mahalanobis distance where S is a covariance matrix 精品文档 Centered and non-centered (absolute) Pearson correlation centered: non-centered: where Spearman rank correlation Compute the ranking of the numbers in each vector Find correlation between ranking numbers .... 精品文档 Geometrical view of clustering If measurements are coordinates, objects become points in some space If the simia

文档评论(0)

liuxiaoyu98 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档