基于图理论的图像有哪些信誉好的足球投注网站结果重排序的研究-计算机应用技术专业论文.docx

基于图理论的图像有哪些信誉好的足球投注网站结果重排序的研究-计算机应用技术专业论文.docx

  1. 1、本文档共55页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
AbstractAbstract Abstract Abstract With the development of the search engine,users have been accustomed to search all kinds of information,including text,images and videos on the Internet with the help of various types of search engines.Traditional text—based image retrieval system,most of which rely on key words search.It is the text information contains a lot of noise.this will lead to the search results are not ideal.Existing mainstream Intemet search engines,such as Google,Bing,Baidu etc..Most of these search engines use the text information around the image to achieve the image search and rank.These search engines lack the intrinsic link between the image and the contents of the image itself,which leads to the unsatisfactory results of the text-based image search results.Now the researchers focus on how to improve the quality of image search results. Image reranking is based on the initial search results.We can extract the inner link of the image and the contents of the image itself.Image reranking is to rank the initial results,then the final reranking results will be the user needs.At present, according to the different framework,the image reranking methods can be classified into four categories:based on linear combination,based on clustering,based on classification and based on graph.The existing graph-based image reranking methods generally used pseudo relevance methods for initial ranking results.These methods consider the front images to have high scores.But it is not a truth.As the initial ranking results are based on the text retrieval,the accuracy of the ranking results is low.It may cause the back of the image to be the user’S need.The contribution of this work iS summarized as follows: 1.To improve the effectiveness of reranking algorithm for image retrieval,this paper presents a multimodal graph-based reranking through random walk algorithm.Firstly,different from the existing reranking algorithms that initialize the relevance score list of the retri

文档评论(0)

peili2018 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档