SVM神经网络的数据分类预测--葡萄酒种类识别.docVIP

SVM神经网络的数据分类预测--葡萄酒种类识别.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
%% SVM神经网络的数据分类预测----意大利葡萄酒种类识别 % %% 清空环境变量 close all; clear; clc; format compact; %% 数据提取 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 画出测试数据的box可视化图 figure; boxplot(wine,orientation,horizontal,labels,categories); title(wine数据的box可视化图,FontSize,12); xlabel(属性值,FontSize,12); grid on; % 画出测试数据的分维可视化图 figure subplot(3,5,1); hold on for run = 1:178 plot(run,wine_labels(run),*); end xlabel(样本,FontSize,10); ylabel(类别标签,FontSize,10); title(class,FontSize,10); for run = 2:14 subplot(3,5,run); hold on; str = [attrib ,num2str(run-1)]; for i = 1:178 plot(i,wine(i,run-1),*); end xlabel(样本,FontSize,10); ylabel(属性值,FontSize,10); title(str,FontSize,10); end % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset,0,1); dataset_scale = dataset_scale; train_wine = dataset_scale(1:mtrain,:); test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: ); %% SVM网络训练 model = svmtrain(train_wine_labels, train_wine, -c 2 -g 1); %% SVM网络预测 [predict_label, accuracy] = svmpredict(test_wine_labels, test_wine, model); %% 结果分析 % 测试集的实际分类和预测分类图 % 通过图可以看出只有一个测试样本是被错分的 figure; hold on; plot(test_wine_labels,o); plot(predict_label,r*); xlabel(测试集样本,FontSize,12); ylabel(类别标签,FontSize,12); legend(实际测试集分类,预测测试集分类); title(测试集的实际分类和预测分类图,FontSize,12); grid on;

文档评论(0)

annylsq + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档