基于LDA主题扩展个性化电影推荐系统.pdf

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Computer Science and Application 计算机科学与应用, 2018, 8(6), 860-866 Published Online June 2018 in Hans. /journal/csa /10.12677/csa.2018.86095 Personalized Movie Recommendation System Based on LDA Theme Extension Ping Cui, Li Song, Xinkai Yang College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai th th th Received: May 24 , 2018; accepted: Jun. 8 , 2018; published: Jun. 15 , 2018 Abstract Traditional movie recommendation algorithms based on user score data have some problems, such as sparse data and false score information, which cannot really and effectively express user interest. User comments, as an effective carrier of information from users’ interests and opinions, can quantify the product features through mining, analyzing and commenting information, and achieve personalized recommendation effect. Site review analysis of text information based on feature film recommended to the users in time according to the user history information analysis. User interest recommendation algorithm is proposed for expanding fusion sentiment analysis and LDA topic model features personalized selection keywords combined with TF-IDF weight item keywords and the characteristics development; the positive rate of sentiment analysis combined with topic comment expands the feature vector for item similarity calculation; the user is inter- ested in the high similarity of the product as the recommended items list recommended. Experi- ments show that the proposed method improves the accuracy of recommendation. Keywords Recommendation System, Topic Model, Sentiment Analysis, Text Mining 基于LDA主题扩展的个性化电影推荐系统 崔 苹,宋 丽,杨新凯

文档评论(0)

xina171127 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档