基于SVM的近红外光谱定性分析及其应用-模式识别与智能系统专业论文.docxVIP

基于SVM的近红外光谱定性分析及其应用-模式识别与智能系统专业论文.docx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于SVM的近红外光谱定性分析及其应用-模式识别与智能系统专业论文

浙江大学硕士学位论文 浙江大学硕士学位论文 III Abstract Near-infrared(NIR)spectroscopy technology is a novel chemistry analysis method.It has some obvious advantages such as unpolluted,nondestructive, fast—speed,high efficiency,low cost as well as easily applicable in on.1ine analysis. NIR spectroscopy has been successfully applied in the fields of food engineering, pharmacy,chemical engineering,petroleum industry etc.This thesis focused on the qualitative analysis techniques of NIR spectroscopy.The main contributions of this thesis are as follows: 1.The principles of NIR spectroscopy technology is introduced,and then the applications of pattem recognition technology and quantitative calibration in NIR spectroscopy technology are presented. 2.Support vector machine(SVMl classifier iS succefully applied in fast recognition of gasoline brands.Compared with other classifiers such as KNN (K。nearest neighbour method),SIMCA(soft independent modeling of class analogy). experimental results show that the SVM classifier has lower percentage of misclassification and more steady recognition results,which Can be widely used in most classification problems in various fields. 3.To improve the accuracy of near-infrared spectral quantitative analysis,a new hybrid PLS algorithm is proposed.An unknown sample is first classified by an SVM classifier,and then several similar training samples of the same type are selected to build the calibration model and predict the property of the unknown sample.To avoid the negative influence of classification failure,the new hybrid PLS includes a local PLS model based on the same—type training samples and a local PLS model based on the total training samples.It determines the property value of the unknown sample by comparing the outputs of the two models. For a set of gasoline samples,the hybrid PLS achieves high prediction accuracy of research octane number. 4.Based on the above research results,the software of an independently developed gasoline octane number NIR an

文档评论(0)

131****9843 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档