个性化检索中相似用户群的获取与更新计算机科学与技术专业论文.docxVIP

个性化检索中相似用户群的获取与更新计算机科学与技术专业论文.docx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
个性化检索中相似用户群的获取与更新计算机科学与技术专业论文

哈尔滨工业大学工学硕士学位论文 哈尔滨工业大学工学硕士学位论文 - - II - Abstract An important characteristic of next generation search engine is personalization. Personalized Information Retrieval (PIR) focuses on users. It captures users’ interest in different kinds (explicit, implicit interest and interest of similar users). These information of users are integrated and used to improve the result of information retrieval system. The establishment and update of similar users’ cluster is an important subtask of personalized information retrieval. Its task is to establish clusters of similar users by analyzing users’ retrieval and browsing history. The clusters will also be updated with the change of users’ information and retrieval areas. The problem in this task is the lack of task’s division and standard evaluation dataset. Therefore, this paper defines four subtasks of PIR, which include the establishment and update of similar users’ cluster. The establishment standard evaluation dataset makes it possible to evaluate and compare the systems of user clustering. The data sparseness limits the performance of user clustering because web pages rated by different users are rare. Therefore, the research of this paper focuses on solving the problem of data sparseness. This paper proposes a user clustering method based on relevance model. It uses users’ data in similar domains to expand the data of users in current domain by relevance model. The users’ clusters will also be updated with the change of retrieval domains. The retrieval information and labeled answers of users are used to establish the experimental dataset. The evaluation matrix includes false alarm rate, miss alarm rate and cost of detection. In the experiment, user clustering based on relevance model improves the result of baseline system by 7.12%. This result proves that the proposed algorithm can alleviate the problem of data sparseness. What’s more, mining users’ interest by its cluster can decrease the false information in users’ m

您可能关注的文档

文档评论(0)

peili2018 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档