《11回归分析的基本思想及其初步应用》课件.pptVIP

《11回归分析的基本思想及其初步应用》课件.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
新学期我们怀揣大学梦想,只要我们相信自己,刻苦努力每一天,就一定能考进 大学 第一章 统计案例 问题1:正方形的面积y与正方形的边长x之间 的函数关系是 y = x2 确定性关系 问题2:某水田水稻产量y与施肥量x之间是否 -------有一个确定性的关系? 例如:在 7 块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得到如下所示的一组数据: 施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455 回顾:两个变量之间的关系 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。 1、定义: 1):相关关系是一种不确定性关系; 注 对具有相关关系的两个变量进行统计分析的方法叫回归分析。 2): 2、现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等 探索:水稻产量y与施肥量x之间大致 有何规律? 10 20 30 40 50 500 450 400 350 300 · · · · · · · 发现:图中各点,大致分布在某条直线附近。 探索2:在这些点附近可画直线不止一条, 哪条直线最能代表x与y之间的关系呢? x y 施化肥量 水稻产量 施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455 散点图 我们回忆一下公式: 最小二乘法: 样本点的中心: 回归方程: 例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。 案例1:女大学生的身高与体重 解:1、选取身高为自变量x,体重为因变量y,作散点图: 2、由散点图知道身高和体重有比较好的 线性相关关系,因此可以用线性回归方程 刻画它们之间的关系。 3、从散点图还看到,样本点散布在某一条 直线的附近,而不是在一条直线上,所以 不能用一次函数y=bx+a描述它们关系。 我们可以用下面的线性回归模型来表示: y=bx+a+e,其中a和b为模型的未知参数, e称为随机误差。 思考P4 产生随机误差项e 的原因是什么? 思考 产生随机误差项e的原因是什么? 随机误差e的来源(可以推广到一般): 1、其它因素的影响:影响体重y 的因素不只是身高 x,可能还包括遗传基因、饮食习惯、是否喜欢运动、生长环境、度量误差等因素; 2、用线性回归模型近似真实模型所引起的误差; 3、身高 x 的观测误差。 例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。 根据最小二乘法估计 和 就是未知参数a和b的最好估计, 所以回归方程是 所以,对于身高为172cm的女大学生,由回归方程可以预报 其体重为 探究P3: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。 探究P3: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。 60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。 函数模型与回归模型之间的差别 函数模型: 回归模型: 线性回归模型

文档评论(0)

秦圈圈 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档