- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
人工神经网络在空调系统中应用
人工神经网络在空调系统中应用 摘?要 简要介绍了人工神经网络的结构及特点,并且详细论述了神经网络在中央空调水系统、风系统、制冷系统、负荷预测、系统的仿真设计和建筑运行能耗评价等方面的应用概况, 指出了神经网络在空调领域今后的发展方向。 关键词 神经网络;空调;应用 中图分类号 TP387 文献标识码 A 文章编号 1673-9671-(2012)071-0184-02 中央空调系统是一个庞大复杂的系统,主要包括:空调冷热源系统、水或空气系统、控制系统等,空调系统能耗与影响因素之间是一种多变量、强耦合、严重非线性的关系,具有很强的动态性。而人工神经网络可以实现从输入到输出的任意非线性映射,能够模拟高度非线性系统,具有较强的学习能力、自适应能力、容错能力和联想能力,已成为复杂的非线性系统建模、仿真、预测的新型工具,人工神经网络自20世纪40年代初被首度提出来以后,经过几十年的发展,广泛运用于模式识别和图像处理、控制与优化、人工智能等方面。随着我国空调事业的快速发展及节能减排新形下,人工神经网络在空调系统中的运用越来越受到广大暖通空调研究者的关注。 1 神经网络 神经网络是对人脑或生物神经网络的抽象和建模,具有从环境学习的能力,以类似生物的交互方式适应环境。人工神经网络是一个由大量简单的神经元广泛联接组成的复合系统,当系统被训练达到平衡后,由各个神经元的权值组成的整个网络的分布状态,就是所求的结果。网络学习的过程也就是各神经元权值的调整过程。人工神经网络根据连接方式不同可以分为两大类:无反馈的前向神经网络和相互连接型网络(包括反馈网络),图1为BP神经网络系统结构简图,BP网络就是一种误差反向传播的前向网络,神经网络的学习算法总体来讲可分为有监督学习和无监督学习。人工神经网络的具有强容错性、冗余性、鲁棒性和信息分布式并行处理及快速进行大量计算能力特点, 能适应复杂环境和进行多目标控制。 图1 BP网络系统结构 2 人工神经网络在空调系统中的应用 2.1 空调风系统方面的应用 变风量系统(VAV系统)的基本思想是:当室内负荷发生变化时,改变送入室内风量,以满足室内人员的舒适性或工艺性要求,实现送风量的自动调节,最大限度地减少风机动力,节约运行能耗。目前对变风量空调控制方法传统方法主要有:定静压控制、变静压控制、总风量控制等,但多数局限于的PID控制理论,对变风量空调这种非线性系统的控制精度难以保证。朱为明等人在VAV系统中采用神经网络预测优化算法对变风量空调进行控制,神经网络预测优化算法控制过程的节能范围为:6%-13.5%,与PID控制方法相比,神经网络预测优化算法的控制量之和减少6%以上,具有较好的节能效果。 2.2 空调水系统方面的应用 中央空调水系统主要包括冷却水和冷冻水系统,对于大型系统,管道长,系统热容量大、惯性大,被控系统水温和流速变化速度较慢,滞后现象严重,是一种典型的大滞后系统,对于过程纯滞后非线性特性,目前过程控制传统算法不具备克服滞后影响的能力,在稳定性和响应速度上都难以达到较好的性能指标。周洪煜等人利用了神经网络的非线性逼近特性、自学习、自组织的能力以及预测控制的滚动优化和反馈校正的特性,建立起的中央空调水系统的动态模型,作为预测控制器的预测模型,不需要对被控对象进行精确的辨识, 提出的多变量神经网络预测控制系统具有优良的控制效果,实现了空调水系统的自适应控制。何厚键等人在中央空调水系统的建模与优化研究中,利用前馈型网络结合BP算法建立了冷却塔和制冷机的神经网络模型,解决的具有高度非线性的中央空调水系统设备的建模问题。 2.3 制冷系统方面的应用 神经网络在空调中的制冷系统应用,主要体现在制冷机组优化控制和制冷系统的故障诊断两方面。在中央空调系统中制冷机组是能耗最大的设备,对制冷机组进行优化控制,提高其运行效率,是空调系统节能的重要途径之一。赵健等人在分析了影响压缩机运行效率的主要因素基础上,建立了以压缩机入口制冷剂温度、压缩机出口制冷剂温度和负荷为输入量,最佳吸气压力输出为输出量的BP神经网络模型。通过在线修正制冷机的吸气压力工作点,解决变负荷下,制冷机优化控制问题,大幅度提高制冷性能参数COP的值,降低了制冷机的运行能耗,与采用额定工况相比,采用神经网络优化控制方法的制冷机节能量约为44.8%。 故障诊断是一种了解和掌握设备在使用过程中的技术,确定其整体或局部是否正常,早期发现故障及其原因并能预报故障发展趋势的技术。在制冷系统的故障诊断方面,神经网络也发挥着重要作用,随着我国空调制冷事的蓬勃发展,制冷系统越来越复杂,故障的潜在发生点也越来越多,制冷设备的故障检测与诊断越来越受到人们的重视。胡正定等人在分析制冷系统常见故障特征的基础上,建立以压缩
您可能关注的文档
最近下载
- (正式版)D-L∕T 751-2014 水轮发电机运行规程.docx VIP
- 2025年天津市部编版小升初语文试卷现代文阅读题分类汇编(含答案) .pdf VIP
- NBT 10243-2019 水电站发电及检修计划编制导则.docx VIP
- 2025年秋(必威体育精装版版)二年级语文上册第六单元教案(部编新教材).pdf
- 看盘的知识与技巧.ppt VIP
- DL-T-710-2018水轮机运行规程.docx VIP
- 远古的信息(课件)人教版2025美术一年级下册.pptx
- 宿州市埇桥区花鼓戏剧团进景区活动策划.docx VIP
- (正式版)D-L∕T 1869-2018 梯级水电厂集中监控系统运行维护规程.docx VIP
- 封神英杰传攻略资料.pdf VIP
文档评论(0)