Lecture 16 Introuction to Asymptotics讲座16介绍的渐近性.pptVIP

Lecture 16 Introuction to Asymptotics讲座16介绍的渐近性.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Lecture 16 Introuction to Asymptotics讲座16介绍的渐近性

Lecture 16: Introduction to Asymptotics (Chapter 12.1–12.3) Agenda The Asymptotic Perspective (Chapter 12.1) Asymptotic Unbiasedness (Chapter 12.2) Consistency (Chapter 12.2) Probability Limits (Chapter 12.2) Consistency of OLS (Chapter 12.3) The Asymptotic Perspective (Chapter 12.1) This lecture marks a major shift in the mathematical underpinnings of the course. So far, we have focused on finding unbiased and efficient estimators. That is, we want estimators that will give you the right answer on average over all possible samples, and that have the lowest possible variance. The Asymptotic Perspective (cont.) So far, we have focused on finding unbiased and efficient estimators. This lecture introduces a set of new criteria for judging estimators, based on large-sample (asymptotic) properties. Instead of looking at the properties of the estimator averaging over all possible samples, we look at properties as the sample size gets very, very large. The Asymptotic Perspective (cont.) Instead of looking at the properties of the estimator averaging over all possible samples, we will start looking at properties as the sample size gets very, very large. Why the shift? The math is going to be much more convenient. Cross-sample properties become intractable as we relax the last (and most crucial) Gauss–Markov assumption, that the X ’s are fixed across samples. The Asymptotic Perspective (cont.) Large-sample (asymptotic) properties are mathematically tractable. We just have to hope that estimators that we prove work well with a near-infinite number of observations will also work well with the finite datasets we actually observe. The Asymptotic Perspective (cont.) One use of Monte Carlo techniques is to study computationally the small sample properties of estimators that have been derived asymptotically. Estimators designed for large samples don’t tend to work well in small samples, but are appropriate for “reasonably large” samples. The Asymptotic Perspective (cont.) What

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档