实时视频去雾.DOC

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
实时视频去雾

基于大气散射模型的实时视频去雾方法研究 摘 要:近年来,我国空气质量大幅下降,导致雾霾天气日渐频繁。在雾霾天气情况下,大气中存在着很多混浊介质(如,颗粒、水滴等),户外场景的视频图像出现了退化和降质,表现为清晰度和对比度低、色彩失真、细节特征模糊不清等特点。视频图像的降质退化使得户外视觉系统不能正常发挥效用,降低了工作效率及其可靠性。例如,在雾霾天气情况下,能见度降低,航拍视频中目标不可见,且色彩及对比度等特征严重衰减,无法满足航拍工作系统的灾害监测预警等后续要求。因而,在计算机视觉这一领域内,有雾视频的清晰化是一个重要的问题。 本文对雾天视频图像的退化和降质进行了详细的分析,阐述了雾天视频图像降质的原因,研究了国内外研究人员在视频图像去雾方面的成果,分析了各研究人员去雾方法的理论基础和核心技术,在此基础上,详细研究了基于大气散射模型的暗通道先验去雾方法,并且进行改进和完善,作出创新。本文建立基于大气散射原理的视频图像去雾模型,以暗通道先验去雾方法为基础,用导向滤波进行改进,采用VS2013和Opencv编写去雾算法程序,实现单幅图像去雾,然后进行CUDA加速,使对常用的1920×1080大小的视频图像进行去雾处理的运算速率达到每秒15帧以上,实现实时视频去雾。最后,将本文的去雾算法与其他算法进行比较,对比不同去雾方法得到的恢复图的效果,以及不同方法的利弊,完善细节,将该算法应用于实际待去雾的视频中。 关键词:图像降质;图像去雾;暗通道先验;大气散射模型 第1章 绪 论 1.1 课题研究背景和意义 一般情况下,获得清晰的视频图像是户外视觉系统正常工作和发挥效用的前提,因此,它对于天气情况非常敏感。然而,近年来,我国空气质量大幅下降,多地频繁出现雾霾天气。雾天条件下,户外场景的视频图像受到严重影响,这是由于大气中存在着许多混浊介质,包括颗粒、水滴等,这些介质会吸收和散射部分可见光,使成像设备接收到的光的强度产生衰减,这导致获取的视频图像产生退化和降质。与无雾图像相比,降质图像表现为清晰度、对比度和能见度降低,细节特征模糊不清,色彩产生失真和偏移等特性[1]。 以上视觉效果较差的降质视频图像丢失了部分有用的信息,这给确定目标和获取视频图像细节信息造成了很大的困难,直接影响户外视觉系统的正常工作,例如公路交通智能监控,军事航空监测,户外目标追踪,航拍工作系统等重要的视觉系统。以灾害监测航拍工作系统为例,在雾天情况下,户外场景能见度低。航拍视频中的目标难以准确追踪锁定,目标颜色和对比度等特征严重衰减,导致航拍灾害监测预警以及后续搜救等工作难以正常进行,情况严重的话可能带来巨大的损失[2]。因此,如果能对雾霾天气下的降质视频图像进行去雾处理,就能使户外视觉系统适用于各种恶劣的天气,增加其可靠性,获取更加精确和有效的信息,提高视觉系统的工作效率,降低成本。同时,随着计算机技术的发展,计算机视觉系统在人们的日常生活和安全监测方面得到了更加广泛的应用,深入地研究高效的视频图像去雾技术有着很重要的社会价值,也是当前社会所迫切需要的。 视频去雾技术是以图像去雾为基础的,图像去雾即用各种技术和算法去除图像中的雾。现阶段,在计算机视觉领域里,已经有很多图像去雾算法被提出,根据去雾的基本原理不同,将图像去雾算法分为两大类:一种是基于图像增强的方法,一种是基于模型的图像复原的方法。这两种方法都可用于改善降质有雾图像的质量,使其在视觉上有更好的效果,但两种方法的机理不同[3]。在本文中,重点研究对象是图像复原的方法,主要研究了基于大气散射模型的去雾方法,并在此基础之上做出了某些方面的改进。 1.2 本课题国内外研究现状 现阶段,去雾在摄影和计算机视觉领域都是非常需要的。首先,去雾可以显著增强场景的能见度并改善色彩偏移,无雾视频图像能增加人视觉上的愉悦感;其次,大部分计算机视觉算法,通常都假定输入图像获取的是现场实时光照,视觉算法的运行(如:光照度分析,特征监测及滤波)难以避免出现偏差。最后,去雾能产生一些深度信息,使得很多高级图像编辑和视觉算法获益。因此,基于现实需要,很多图像去雾方法被提出来了。L.Bissonnette等研究人员早在1992年就对雨天和雾天条件下的降质图像进行了去雾的研究[4];Southerly和John P.Oakley等人1998年对航拍的有雾天气条件下的图像进行去雾处理,最终得到了一些研究成果[5]。在各研究人员二十多年的研究中,图像去雾的技术取得了非常大的进步。 上一节中提到现阶段有雾图像的处理方法可分为两大类:基于图像增强及基于图像复原的方法。基于图像增强的方法是对图像的对比度、边缘、轮廓等特征进行一些处理,来显示出图像的细节信息,从而使其在视觉上

文档评论(0)

fengruiling + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档