- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Hierarchical ModelBased Clustering of Large Datasets Through 基于层次模型大型数据集通过聚类
Hierarchical Model-Based Clustering of Large Datasets Through Fractionation and Refractionation Jeremy Tantrum, Department of Statistics, University of Washington joint work with Alejandro Murua Werner Stuetzle Insightful Corporation University of Washington Motivating Example Goal of Clustering NonParametric Clustering NonParametric Clustering Model Based Clustering Model Based Clustering Model Based Clustering Fitting a Mixture of Gaussians Use the EM algorithm to maximize the log likelihood Estimates the probabilities of each observation belonging to each group Maximizes likelihood given these probabilites Requires a good starting point Model Based Clustering Hierarchical Clustering Provides a good starting point for EM algorithm Start with every point being it’s own cluster Merge the two closest clusters Measured by the decrease in likelihood when those two clusters are merged Uses the Classification Likelihood – not the Mixture Likelihood Algorithm is quadratic in the number of observations Likelihood Distance Bayesian Information Criterion Choose number of clusters by maximizing the Bayesian Information Criterion r is the number of parameters n is the number of observations Log likelihood penalized for complexity Fractionation Fractionation an meta-observations after the first round a2n meta-observations after the second round ain meta-observations after the ith round For the ith pass, we have ai-1n/M fractions taking O(M2) operations each Total number of operations is: Total running time is linear in n! Model Based Fractionation Use model based clustering Meta-observations contain all sufficient statistics – (ni, mi, Si) ni is the number of observations – size mi is the mean – location Si is the covariance matrix – shape and volume Model Based Fractionation Example 2 Refractionation Problem: If the number of meta-observations generated from a fraction is less than the number of groups in that fraction then two or more groups wi
您可能关注的文档
- COX2理论和FDA第一个批准COX2抑制剂.ppt
- CRC生成与校验设计实现计算机组成原理课程设计.docx
- CRACKS IN THE RAINBOW GROUP COMMONALITY AS A …在彩虹集团作为一个公共裂缝….ppt
- cosmic structure formation宇宙结构形成.ppt
- CRM当代电信企业核心竞争力引擎.doc
- Cosmology from the Cosmic Microwave Background从宇宙微波背景宇宙学.ppt
- CBCT在口腔正畸临床及临床研究中应用.ppt
- C语言程序设计教学网站设计与开发.docx
- C语言程序停车场管理系统课程设计报告基于Huffman算法编码与译码技术探究.doc
- CT肝脏分段PPT.ppt
- Health Sector Trends and Priority Services Framing the Issues卫生部门发展趋势和优先服务框架问题.ppt
- HIS中医学影像信息处理系统.ppt
- Hinfinity Vehicle Control ForwardH∞控制车辆前进.ppt
- H公司在招聘中存在问题及对策人力资源管理师论文.doc
- HPV检测在诊断宫颈癌前病变中特殊意义.ppt
- Hierarchical Multitream Posterior Based Speech recognition …分层多流后语音识别….ppt
- H公司项目开发中人力资源管理研究.doc
- ICT整合于教育心理学研究.ppt
- IABP临床使用.ppt
- ICU院内感染与抗生素合理使用.ppt
文档评论(0)