选修23第三章统计的案例.docVIP

选修23第三章统计的案例.doc

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
3.1回归分析的基本思想及其初步应用(一) 【考点要求】:了解回归分析的基本思想、方法及初步应用. 【预习自学】: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据作散点图求回归直线方程利用方程进行预报. 【探究新知与合作交流】: 【探究点一、求回归方程】 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号  1  2  3  4  5  6  7  8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路教师演示学生整理)  第一步:作散点图 第二步:求回归方程 第三步:代值计算 ② 提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. 【探究点二、线性回归模型与一次函数的不同】 事实上,观察上述散点图,我们可以发现女学生的体重和身高之间的关系并不能用一次函数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型,其中残差变量中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 【当堂检测】:F表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗Y(吨标准煤)的几组对照数据 3 4 5 6 y 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,求出Y关于x的线性回归方程Y=bx+a; 【课堂小结】 【巩固训练】: 1.一家保险公司调查其总公司营业部的加班程度,收集了5周中每周加班工作时间y(小时)与签发新保单数目x的数据如下表: x 100 120 140 160 180 y 45 54 62 75 92 则用最小乘估计求出的回归直线方程是________. 已知10只狗的血球体积及红血球的测量值如下 (血球体积,mm),(红血球数,百万) 画出上表的散点图;(2)求出回归直线 以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据: 房屋面积(m2) 115 110 80 135 105 销售价格(万元) 24.8 21.6 18.4 29.2 22 (1)画出数据对应的散点图; (2)求线性回归方程. 残差平方和:回归值与样本值差的平方和,即. 回归平方和:相应回归值与样本均值差的平方和,即. (2)学习要领:①注意、、的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好. 【探究点二、评价模型拟合的效果】 例2 关于与有如下数据:      2   4   5   6   8      30   40   60   50   70 为了对、两个变量进行统计分析,现有以下两种线性模型:,,试比较哪一个模型拟合的效果更好. 分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论. 【当堂检测】: 关于x与y有如下数据: x 2 3 4 5 6 y 30 40 60 50 70 为了对x、y两个变量进行统计分析,现有以下两种线性模型:y =6.5x+17.5,y=7x+17,试比较哪一个模型拟合的效果更好? 【课堂小结】

文档评论(0)

bokegood + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档