基于低秩矩阵分解的CT图像重建.pdfVIP

  1. 1、本文档共23页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于低秩矩阵分解的CT图像重建

Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study Jian-Feng Cai∗ Xun Jia† Hao Gao‡ Steve B. Jiang§ Zuowei Shen¶ Hongkai Zhao Abstract Respiration-correlated CBCT, commonly called 4DCBCT, provides respiratory phase-resolved CBCT images. A typical 4DCBCT consists of a small number (usually 10 or less) of CBCT images, each corresponding to a particular breathing phase and reconstructed using all projections falling in that phase bin over the 4DCBCT scan. Therefore, 4DCBCT represents averaged patient images over one breathing cycle and the 4th dimension is actually breathing phase instead of time. In many clinical applications, it is desirable to obtain true 4DCBCT with the 4th dimension being time, i.e., each constituent CBCT image corresponds to an instantaneous projection. Theoretically it is impossible to reconstruct a CBCT image from a single projection. However, if all the constituent CBCT images of a 4DCBCT scan share a lot of redundant information and can be represented with or approximated by linear combinations of a small number of basis images, it might be possible to make a good reconstruction of these images by exploring sparsity and coherence/redundancy of these CBCT images. These CBCT images are not completely time resolved since they are represented by a small number of basis images, but they can exploit both local and global temporal coherence of the patient anatomy automatically and contain much more temporal variation information of the patient geometry than the conventional 4DCBCT. We propose in this work a computational model and algorit

文档评论(0)

baoyue + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档